Table 1. Inputs and outputs per acre and energy ratios for mixed crop and livestock farms.

	Per acre of cropland			Farm	Energy ratio
Farms	Marketed crops (C)	All marketed outputs (O) ^a — million Btu -	All purchased inputs (I) ^b	energy ratio (O/I)	of marketed crops to outputs (C/O) unitless
		minion btu -			unitiess ———
Sunshine Farm					
Without photovoltaic array	5.5	5.8	3.4	1.7	0.95
With photovoltaic array	5.5	5.8	3.3	1.8	0.95
Pennsylvania dairy farmi	2.4	3.5	2.0	1.8	0.69
Charles of Amich forms					
Groups of Amish farms ^c 2 groups (PA) ⁱⁱ	0.7-0.9	2.8-6.6	3.3-9.4	0.7-0.8	0.14-0.25
4 groups (PA, WI, IL) ⁱⁱⁱ		2.1-5.1	1.3-5.2	1.0-1.6	——————————————————————————————————————
Groups of conventional far	ms ^c				
3 groups (PA) ⁱⁱ	0.8-1.6	5.5-6.9	13.2-17.5	0.4^{d}	0.14-0.29
3 groups (PA, WI)iii		2.7-4.9	8.3-9.8	0.3-0.6	
Group with greatest marketed output (IL)iii	10.9	18.4	9.2	2.0	0.59

^a Outputs from crops and animals.

^b Inputs for crops, animals, and things used on the farm.

^c The reported data are averages for individual groups, not unaveraged numbers for individual farms, and are given as ranges of averages. States are indicated in parentheses.

^d The ratio was the same, by coincidence, for the three groups of farms defined by dairy herd size.

Notes for Tables 1-3.

- ¹ J. Zucchetto and G. Bickle. 1984. Energy and nutrient analyses of a dairy farm in central Pennsylvania. *Energy in Agriculture* 3:29-47.
- ii P. Craumer. 1979. Farm productivity and energy efficiency in Amish and modern dairying. *Agriculture and Environment* 4:281-299.
- iii W.A. Johnson, V. Stoltzfus and P. Craumer. 1977. Energy conservation in Amish agriculture. Science 198:373-378.
- ^{iv} M. Green. 1978. Eating Oil: Energy Use in Food Production. Westview Press, Boulder, CO.
- ^v R.M. Gifford. 1976. An overview of fuel used for crops and national agricultural systems. Search 7:412-417.
- vi C.A.S. Hall, C.J. Cleveland and R. Kaufmann. 1986. *Energy and Resource Quality: The Ecology of the Economic Process*. John Wiley, New York.
- vii C.E. Goering and M.J. Daughtery. 1982. Energy accounting for eleven vegetable oil fuels. *Transactions of the American Society of Agricultural Engineers* 25:1209-1215.
- viii R. Herendeen and S. Brown. 1987. A comparative analysis of net energy from woody biomass. *Energy* 12:75-84.
- ix A.F. Turhollow and R.D. Perlack. 1991. Emissions of CO₂ from energy crop production. *Biomass and Bioenergy* 1:129-135.
- ^x W. Vergara and D. Pimentel. 1978. Fuels from biomass: Comparative study of the potential in five countries: The United States, Brazil, India, Sudan, and Sweden. *Advances in Energy Systems and Technology* 1:125-173.
- xi M. Demuynck, E.J. Nyns and W. Palz. 1984. *Biogas Plants in Europe: A Practical Handbook*. D. Reidel Publishing Co., Dordrecht.
- xii R.A. Herendeen. 1988. Net energy considerations. Pp. 255-273 in: R.E. West and F. Kreith (eds.). *Economic Analysis of Solar Thermal Energy Systems*. MIT Press, Cambridge, MA.
- xiii C.J. Cleveland and R. Herendeen. 1989. Solar parabolic collectors: Successive generations are better net energy and exergy producers. *Energy Systems and Policy* 13:63-77.
- xiv G. Tyner, Sr. and R.G. Fowler. 1992. Estimating the viability of alternative sources of energy. In: *Investing in Natural Capital A Prerequisite for Sustainability*. Second Meeting of the International Society for Ecological Economics. Stockholm University, Stockholm, Sweden, 3-6 August 1992.
- xv B. Sørensen. 1995. History of, and recent progress in, wind-energy utilization. *Annual Review of Energy and Environment* 20:387-424.
- xvi M.W. Gilliland, J.M. Klopatek and S.G. Hildebrand. 1981. Net energy: Results for small-scale hydroelectric power and summary of existing analyses. *Energy* 6:1029-1040.
- xvii D.M. Gates. 1985. Energy and Ecology. Sinauer Associates, Sunderland, MA.
- xviii R.H. Williams and E.D. Larson. 1993. Advanced gasification-based biomass power generation. Pp. 729-785 in: T.B. Johansson, H. Kelly, A.K.N. Reddy and R.H. Williams (eds.). *Renewable Energy: Sources for Fuels and Electricity.* Island Press, Washington, DC.
- xix B. Hannon. 1981. The energy cost of energy. Pp. 81-107 in: H.E. Daly and A.F. Umaña (eds.). *Energy, Economics, and the Environment: Conflicting Views of an Essential Interrelationship*. Westview Press, Boulder, CO.