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ABSTRACT

We are developing a new perennial grain by domesticating the perennial grass Thinopyrum 

intermedium (intermediate wheatgrass). In 1983, intermediate wheatgrass was selected for 

domestication by the Rodale Institute (Kutztown, Penn., USA). Nearly 100 species of perennial 

grasses were evaluated for promise as a perennial grain before choosing intermediate wheatgrass 

to domesticate. The Rodale Institute performed two cycles of selection, beginning in 1988. Using 

selections made by Rodale, breeding work began at The Land Institute (Salina, Kan., USA) in 2002. 
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Selection has been for yield per head, increased seed mass, free threshing ability, reduced height, 

and early maturity. Two cycles of selection at The Land Institute have increased seed yield by about 

77 percent and seed mass by about 23 percent, when grown in a solid stand. Selected materials 

have been found to possess a higher harvest index and reduced plant spread. 

Molecular tools are being developed for intermediate wheatgrass. A combination of expressed 

sequence tag (EST), SSRs and AFLP markers will be used to genotype an experimental mapping 

population comprises 268 full-sib progeny derived from a reciprocal cross of two experimental 

genotypes. Genotyping by sequencing is also being used to identify ~3 000 high quality 

single-nucleotide polymorphisms (SNPs) in a population derived from one selfed individual. 

Phenotype data has been collected and will be used to identify QTL associated with SNPs. Using 

gene cloning, protein separation and identification, and sequence alignments; we were able to 

identify five HMW-GS genes and their allelic variants in intermediate wheatgrass plants.

Since 2001, we have been working to develop perennial wheat by crossing wheat (Triticum 

spp.) with perennial Thinopyrum species. We have obtained a few stable lines with one set 

(12-14) Thinopyrum chromosomes and 42 wheat chromosomes. These have better agronomic 

performance in Kansas than other materials, but lack perenniality. Crosses between winter durum 

wheat and Thinopyrum intermedium have been recently developed, and they are promising in 

terms of perenniality, seed weight, winter hardiness, and vigor. To study the impact of annual/

perennial genome dosage on perenniality and agronomic performance, we have crossed diploid 

and tetraploid wheat lines with tetraploid and hexaploid Thinopyrum species. All F
1
 plants are 

perennial, and many have been doubled with colchicine. Wheat chromosome-specific markers 

have been used to characterize 94 plants that were perennial in the field. Plants with more 

wheat chromosomes eliminated tended to be more perennial, but specific chromosomes were not 

associated with perenniality or annuality.

INTRODUCTION

Two major approaches are being used to develop perennial small grains: wide hybridization and 

domestication. The two approaches present unique strengths and challenges. Wide hybridization 

involves crossing an annual grain such as wheat with related perennial species. Wide crosses 

will in theory make available genes controlling traits such as yield, seed size, free threshing 

ability, and quality, which have been accumulated in current grain crops. With wheat the 

challenge has been to obtain cytogenetic stability in wide hybrids while preserving perenniality 

and domestication traits. Direct domestication of wild perennials has the potential benefit of 

working with populations that are vigorous perennials. However, the necessary genetic variation 

for domestication may be lacking in perennial species, or substantial time may be required for 

selection to achieve adequate seed size, yield, or other domestic traits. 
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The first sustained effort to directly domesticate a perennial grass for grain, of which we are 

aware, was initiated by researchers at The Rodale Institute in Pennsylvania, United States of 

America (Wagoner, 1990). The researchers leading this domestication effort cite Jackson (1980) 

as the inspiration for developing perennial grasses for grain. In 1983, researchers began to 

evaluate nearly 100 perennial grasses to determine their suitability for grain production. Based 

on numerous criteria, intermediate wheatgrass (Thinopyrum intermedium) was selected as a 

perennial grain candidate. Beginning in 1988, two cycles of selection for improved fertility, seed 

size, and other traits were performed in Pennsylvania.

Selection for grain production in intermediate wheatgrass was continued by workers at The 

Land Institute in Kansas, United States of America, beginning in 2003 (Cox et al. 2010). Four 

cycles of selection using an index based primarily on seed yield per head, seed mass, and free 

threshing ability have been performed at The Land Institute. Improved populations resulting 

from this selection program are currently being evaluated and further selected by collaborators 

in diverse environments.

We began a perennial wheat (Agrotriticum) breeding program in 2001. Perennial wheat has 

potential in reducing soil erosion and promoting the sustainability of agriculture (Cox et al. 

2002; Cox et al. 2006). Through perennial wheat, or wheat-Thinopyrum hybrids, more than 18 

agronomically important traits other than perenniality have been transferred from Thinopyrum 

species into wheat (Chen et al. 2005). At the beginning of our breeding program, we introduced 

perennial wheat lines from other institutions. All of them died at a time point after grain harvest 

during the hot summer of Kansas (Cox et al. 2006). Therefore, we have sought fresh approaches 

to developing truly perennial wheat. Among these new approaches are management techniques. 

Because we have yet to identify agronomic strategies to induce perenniality in Kansas, here we 

will focus on genetic approaches.

RECENT PROGRESS

Breeding Perennial Wheat

In our search for an approach to perennial wheat with good grain yield and perenniality, 

we have crossed wheat with Th. ponticum (10x = 70), Th. intermedium (6x = 42), and 

Th. elongatum (2x = 14). We have also attempted crosses with other Thinopyrum species. 

Crosses involving Th. junceiforme (4x = 28), Th. bessarabicum (2x = 14), and a Th. bessarabicum-

Th. elongatum hybrid (4x = 28) have produced hybrid F
1
 plants successfully. The crosses with 

Th. junceum (6x = 42) and Th. scerpium (4x = 28) could form well-developed embryos. But 

the plantlets died shortly after germination on nutrient medium. One Thinopyrum accession 

(6x = 42; PI531731) is unique in that it is strictly self-pollinated. We have attempted to 

74

G E N E T I C S  A N D  B R E E D I N G :  S TAT E  O F  T H E  A R T ,  G A P S  A N D  O P P O R T U N I T I E S

P E R E N N I A L  C R O P S  F O R  F O O D  S E C U R I T Y  P R O C E E D I N G S  O F  T H E  F A O  E X P E R T  W O R K S H O P



cross 6x and 4x wheat with this accession. However, no hybrid embryos have been obtained 

as the caryopses aborted at early stage. We have successfully obtained F
1
 hybrids between 

Thinopyrum species and both rye and triticale. So far, no crosses involving rye have resulted 

in lines with perenniality and seed fertility.

In recent years, we have created a couple of genetically stable lines which were derived 

from the crosses between common wheat (T. aestivum) and Th. intermedium wheatgrass. 

Similar to a great number of perennial wheat lines developed by other institutions, these lines 

had chromosome numbers from 54 to 56 with 12 to14 chromosomes from wheatgrass. Minor 

translocations involving wheatgrass chromosomes were observed on some wheat chromosomes. 

In our plot experiments, four breeding lines named B373, B1126#1, B1126#2 and B1321 did 

much better than the others. They looked similar to annual wheat cultivars, ripened early, and had 

excellent seed fertility and better-filled grain. Interestingly, these four lines shared a common 

parent, B373. They were similar to B373 in many aspects morphologically, but had improved 

regrowth ability. The line B373 was just a few days later in maturity than local common wheat 

cultivars. The wheat cultivar Jagger, a leading wheat cultivar in Kansas from the 1990s through 

the 2000s, was the donor of wheat chromosomes to B373. ‘Jagger’ might have contributed to the 

improved adaptability of these lines. By contrast, perennial wheat lines from the former Soviet 

Union and Washington State did not present similar adaptability. They flowered extremely late, 

produced fewer heads, and filled grain poorly.

In a root-tube experiment, we compared the three “perennial” wheat lines B373, B1126#2, 

and OK7211542 with wheat cultivar Jagger and a Th. intermedium selection C3-2627. The total 

biomass, root biomass, shoot biomass, and grain weight of the three perennial wheat lines are 

intermediate to the wheat and wheatgrass controls, respectively, except that OK7211542 had 

larger total biomass and shoot biomass than both controls. Like perennial wheatgrass, perennial 

wheat lines showed larger root mass than the wheat cultivar, especially at depth. At maturity, 

part of their leaves and stems were still green. These differences appear to be associated with 

maturity time and the strength of perenniality.

The regrowth ability of our breeding lines varies widely in different years or environments, 

which was also observed in investigations by other researchers (Tsitsin, 1978; Murphy et 

al. 2009; Hayes et al. 2011; Jaikumar et al. 2012). Extremely hot, cold, and dry weather 

conditions all can suppress the regrowth or cause the death of new tillers. We noticed 

that irrigation or rain after anthesis could promote regrowth. We have kept a number of 

lines in the greenhouse for continuous observation. The plants were watered every day, so 

that they were not stressed by moisture. However, the plants died with no more than three 

grain harvests. The number of tillers declined over life cycles. Unlike wheatgrass plants, the 

position in the crown where new tillers originated moved upward over time, which could 

make buds and new tillers vulnerable to environmental stresses. Furthermore, the new tillers 
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entered the reproductive stage quickly without the need of vernalization. We have not found 

a line among our materials showing a typical winter-type regrowth profile in which the new 

tillers stay dormant like wheatgrass. Tsitsin (1978) suggested that winter-type regrowth was 

desirable for stronger perenniality. Common to these tested lines is that they carried about 

one set of 14 wheatgrass chromosomes. 

An exception is MT-2, which was selected for forage production by Montana State University. 

In the Kansas environment, this hybrid line among all those we have obtained from other 

institutions is the most perennial. This line has lived in our field for two years up to present. It 

roughly contains two wheat genomes (mean = 26.2 wheat chromosomes) and two wheatgrass 

genomes (mean = 29.2 wheatgrass chromosomes) and is genetically unstable (Jones et al. 1999). 

The instability of this durum wheat (T. turgidum ssp. durum) hybrid and similar durum derivatives 

has led some to question the feasibility of durum as a parent of perennial wheat.

The problem of genetic instability may possibly be overcome by taking advantage of genetic 

variability within tetraploid species. Among the progenies derived from a cross of durum wheat 

with Th. junceiforme, we have found lines likely to be stable, predicted on the basis of seed 

fertility. Tetraploid wheat species may also possess genes that could promote genetic stability. 

It seems unnecessary to backcross with common wheat as advised by Ellneskog-Staam and 

Merker (2002).

By means of backcrossing to wheatgrass or intermating different perennial hybrid progenies 

at their early generations, we obtained 843 truly perennial plants that survived the hot Kansas 

summer in 2010 for the first time. These plants varied greatly in perenniality, seed fertility, 

vigour, regrowth habit, and other traits. Using the genomic in situ hybridization (GISH) 

technique, we examined the genomic constitutions of 11 plants. They possessed chromosome 

numbers ranging from 53 to 70, with some wheat chromosomes lost. In order to identify which 

wheat chromosomes might be associated with the elevated perenniality, we screened 154 wheat 

chromosome-specific markers (http://probes.pw.usda.gov:8080/snpworld/Search") on a panel of 

wheat and wheatgrass parents. We chose these markers because they had been assigned to 21 

wheat chromosomes individually and had the capacity to distinguish homologous chromosomes. 

The presence of a marker clearly indicated the presence of a wheat chromosome. Fifty-six markers 

that amplified only in wheat were selected eventually to genotype a subset of 94 perennial 

plants (at F
2
 to F

5
 generations). The results showed that the patterns of wheat chromosome 

elimination differed by plants. All 94 plants had lost more than one wheat chromosome. With 

more wheat chromosomes eliminated, a plant tended to be more perennial. However, we did 

not see a specific wheat chromosome that was missing consistently across all plants, which 

would have indicated that a single wheat chromosome had a deciding impact on perenniality. It 

might be concluded that decreased abundance of wheat chromosomes is necessary for perennial 

wheat to live longer in the Kansas environment. Alternatively, the ratio of annual to perennial 

chromosomes may be critical to perenniality. 
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Cox et al. (2006) proposed that more than one wheatgrass genome would be required for 

perennial wheat to live in the field for many years. With the increased abundance of wheatgrass 

chromosomes and decrease in wheat chromosomes, some new issues need to be addressed. For 

instance, at present we do not know what percentage of wheatgrass chromosomes is appropriate 

for stronger perenniality that will ensure survival for multiple years. We also do not know if the 

decrease in wheat chromosomes will lead to more severe genetic instability. When polyploid 

wheatgrass species are used in crosses, wheatgrass chromosomes tend to be eliminated gradually 

in subsequent generations until a stable genomic constitution is reached (Tsitsin, 1978). It is 

impossible to assess the effects of complete genomes adequately using advanced generation 

materials due to chromosome elimination. To investigate these issues, we are establishing a 

panel of full amphiploids with different genomic constitutions that are composed of wheat: 

wheatgrass chromosome ratios of 3:3, 3:2, 2:3, 2:2, 1:3, and 1:2, respectively. Diploid, tetraploid, 

and hexaploid wheat species have been crossed with tetraploid and hexaploid wheatgrass species 

successfully. A fraction of such full amphiploids have been chromosome doubled, including the F
1 

hybrid (2n = 84) between common wheat and Th. intermedium wheatgrass. Comparisons among 

them will help us understand how many wheat and wheatgrass genomes will enable perenniality 

across diverse environments. 

The role of cytoplasm in the crosses of wheat with wheatgrass species may be worth exploring. 

Wide hybridizations in wheat and oilseeds have indicated that sequence deletion was different 

in reciprocal crosses, reflecting the interaction between nucleus and cytoplasm (Gill, 1991; 

Song et al. 1995; Ma and Gustafson, 2008; Ozkan and Feldman, 2009). To the best of our 

knowledge, all the existing perennial wheat lines bear wheat cytoplasm. We speculate that due 

to incompatibility with wheat cytoplasm, some wheatgrass chromosomes or genes important to 

perenniality are preferentially eliminated or silenced. This may be why all existing lines are not 

as persistent as the F
1
 hybrids or perennial parents. Viable embryos are very difficult to obtain 

when wheatgrass is used as the female parent. Out of about 120 heads pollinated, we obtained 

a single plant with cytoplasm from Th. intermedium. We are investigating whether wheatgrass 

cytoplasm will aid the retention of wheatgrass chromosomes important to perenniality. 

The easy crossability of wheat with Thinopyrum species provides opportunities for the exchange 

of genetic information between annual and perennial grass species. Both genera have their own 

pros and cons. We regard perennial wheat a hybrid species that bridges two genera. Putting more 

wheatgrass chromosomes/genes into wheat or vice versa appears to be the approach to ‘truly’ 

perennial wheat. As indicated by MT-2 and our recent investigations, the cross of durum wheat 

and Th. intermedium might be the best approach to explore in the coming years. 

Perennial wheat breeding has been conducted for over 80 years. Hundreds of perennial 

wheat lines have been developed by different institutions. Certainly survival is dependent 

upon environmental variables, and agronomic practices developed specifically for perennial 

wheat may be critical to the persistence of perennial wheat. But declining stands in even 
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the most moderate environments leads us to conclude that genetic improvement will be 

essential to persistence. The lack of sufficient persistence remains the biggest problem in the 

development of perennial wheat. The existing lines (with one set of wheatgrass chromosomes) 

have partly inherited the traits (e.g. large roots, tolerance to abiotic and biotic stresses) 

that make perennial wheatgrass persistent across varied environments. Before we have ‘truly’ 

perennial wheat, the use of these traits could yield some agronomic and ecological benefits 

for the time being. For instance, recent study of hybrid lines revealed novel disease resistance 

(Turner et al. 2013). Although current lines lack perenniality, their grain traits are similar to 

wheat. Therefore, these types could be economically viable in the near term while reliably 

perennial wheat varieties are developed.

Intermediate Wheatgrass Breeding in Kansas

Selection at the Land Institute has been based on individual plants spaced 0.91 metres apart. 

The first selection cycle comprises 1 000 clones replicated three times. The second selection 

cycle used about 4 000 individual plants. After two cycles of selection primarily for seed yield 

per head and seed mass, the resulting populations were planted in a replicated solid-seeded trial 

at two locations. For controls, the base population (consisting of seed obtained from the Rodale 

Institute) and several forage varieties were used. For simplicity we are presenting data from the 

irrigated location in the second year of production. 

Two cycles of selection resulted in a 77 percent increase in seed yield (Table 1). If progress 

were to continue in a linear manner, an additional 12 cycles of selection would result in yields 

of approximately 2 500 kg ha-1, similar to annual wheat in Kansas. Since this evaluation was 

initiated, an additional two cycles of selection have been performed, requiring two years per 

cycle. Therefore, we expect that with sustained efforts yields in Kansas may be similar to wheat 

within 20 years. 

Seed size has responded weakly to index selection in space plants, when evaluated in a solid 

stand (Table 1). If trends from the first two cycles continue, about 110 years of sustained effort 

would be necessary to achieve a seed size of 30 mg seed-1, similar to annual wheat. Therefore, 

large seed size may only be attained by using other approaches. We are currently beginning 

efforts to introgress genes controlling seed size from wheat. Also, genomic approaches may be 

useful in screening diverse collections for alleles conferring increased seed size.
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TABLE 1. PERFORMANCE OF INTERMEDIATE WHEATGRASS POPULATIONS BEFORE (CYCLE 0) AND FOLLOWING ONE 

(CYCLE 1) AND TWO (CYCLE 2) CYCLES OF SELECTION

Three intermediate wheatgrass cultivars (Luna, Manska, and Rush) and one tall wheatgrass cultivar (Jose) are 
included as controls.

SEED 
YIELD

BIOMASS 
YIELD

SEED 
MASS

HARVEST 
INDEX CPa NDFa ADFa

g m-2 mg seed-1 % g Kg-1

Cycle 0 39.2 1 770 3.92 2.21 37.4 687 465.3

Cycle 1 56.5 1 920 4.48 2.94 30.6 680 461.1

Cycle 2 69.3 1 740 4.84 3.93 33.5 662 444.5

Luna 17.8 1 480 4.10 1.22 45.0 630 447.5

Manska 21.6 1 610 3.41 1.35 37.0 653 435.7

Rush 26.3 1 730 3.61 1.55 34.5 655 440.6

Jose 6.6 1 500 4.06 0.46 44.7 683 478.7

SEMb 7.4 120 0.15 0.39 3.0 11 8.2

a Crude protein (CP), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were determined for the non-seed biomass 
collected at seed maturity.

b Standard error of the mean.

Biomass production has remained mostly unchanged during selection for seed traits (Table 1). 

Therefore, rising grain yields are apparently occurring due to increased harvest index. In fact, 

across the populations evaluated the correlation between grain yield and harvest index was 0.996.

Forage quality indicators of the biomass residue were measured to determine whether selection 

for seed production was reducing forage quality (Table 1). So far the effects of selection have 

been minor relative to forage varieties, at least when measured at the late stage when seed is 

ripe. However, we expect that increased allocation of nitrogen to seed will ultimately reduce 

protein content of the residue. For systems involving both grain and forage production, selection 

for forage quality at seed maturity may be necessary.

During the third cycle of selection in space-planted nurseries, several individuals with 

outstanding yield per head were identified. A second set of plants with large seed size were 

also selected. These two groups of plants were cloned by dividing their crowns and used to 

establish bordered plots 0.91 metres square at two locations: Kansas and Minnesota. The Kansas 

location has higher summer temperatures, but was irrigated. The Minnesota location was not 

irrigated. Although the plants were selected in the Kansas environment, difference in seed yield 

between selected and unselected types was larger at the more moderate Minnesota location 

(Table 2). Total aboveground biomass was similar among genotypes, and higher than potential 

perennial biofuel crops for this region (Parrish and Fike, 2005). In Minnesota, the largest-seed 

genotypes had seed yield more than 200 g/m2 (Table 2). These yields were obtained from the 

best genotypes in small hand-harvested plots, but they indicate that there is potential to obtain 

substantial seed yields from this perennial grass.
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TABLE 2. PERFORMANCE OF INTERMEDIATE WHEATGRASS AT TWO LOCATIONS IN THE SECOND YEAR

Sets of clones (seed weight and seed yield) were compared with the starting population (Cycle 0) and a forage 
cultivar (Clarke). Predicted means from a mixed model, ± standard errors, are presented.

POPULATION

BIOMASS SEED YIELD SEED WEIGHT 

MINNESOTA KANSAS MINNESOTA KANSAS MINNESOTA KANSAS

g m-2 mg seed-1

Cycle 0 1 690 ±160 1 650 ±160 84 ±14 68 ±14 5.73 ±0.39 4.10 ±0.39

Clarke 2 000 ±160 2 170 ±160 117 ±14 49 ±14 5.10 ±0.39 3.73 ±0.39

Seed Weight 2 380 ±220 1 660 ±110 212 ±19 88 ±10 9.26 ±0.87 7.57 ±0.66

Seed Yield 1 830 ±140 1 810 ±100 192 ±12 100 ±9 7.60 ±0.68 6.07 ±0.62

Since 2003 we have been performing mass selection for seed size. Initially, we began by 

harvesting a set of plants and obtaining the naked seed by floating off seed remaining in hulls. 

The naked seed was then passed through a set of sieves to obtain the largest seeds. These were 

planted, and then the process was repeated in the following year. After three cycles of selection, 

we began using a machine to automatically weigh each naked seed and sort out the largest 

seeds. We became concerned that this selection method might cause increased see sterility, since 

seed number and size are often inversely correlated (Sadras, 2007). So beginning with the fifth 

selection cycle we threshed each plant separately to obtain a seed yield per plant. Seed from the 

lowest-yield plants was discarded prior to sorting out the largest naked seed for selection. The 

selection intensity has varied from year to year, depending on seed yield. But in the later selection 

cycles about 120 plants have been established each cycle, selected out of about 40 000 naked 

seeds harvested. Seed size has fluctuated over the years depending on growing conditions and 

selection protocol. But the trend of increasing seed size has been strong (Figure 1). Eight cycles 

of selection have more than doubled seed weight when grown in a spaced plant selection nursery.

FIGURE 1. RESPONSE OF INTERMEDIATE WHEATGRASS TO MASS SELECTION BASED ON INDIVIDUAL SEED WEIGHT
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Intermediate wheatgrass breeding in Manitoba

In the spring of 2011, a 4 500 plant nursery was established at the Carman, Manitoba research 

farm of the Department of Plant Science at the University of Manitoba. Accessions from the 

Germplasm Resources Information Network (GRIN) system of the United States Department of 

Agriculture (USDA) plus advanced generation materials from the Land Institute were planted.

The winter of 2011 to 2012 was relatively short with snowfall arriving in early December 

2011 and snowmelt completed by 13 March 2012 on our Carman, Manitoba plots. For six days 

beginning on 19 March 2012, the daytime high was at least 19.9°C on four days with low 

temperatures above 0°C for the six days. This was followed by a four day period beginning 9 

April 2012 where low temperatures were -5.5°C or lower. Approximately 50 percent of the 4 500 

plants in the field sustained severe die-back. An additional 15 percent lodged prior to flowering, 

mostly due to reduced crown density caused by low temperature damage. The winter of 2012 

to2013 was by comparison long and cold. Overnight lows below 0°C began on 31 October 2012 

and lasted until 25 April 2013. Snow cover remained until 6 May 2013. An additional 15 percent 

of the remaining plants were lost due to these winter conditions. We have now experienced two 

sets of vastly divergent winter conditions and we now feel that we have excellent materials 

from which to base our selections. Yield stability will be evaluated utilizing the yields from the 

first two harvests (2012 and 2013). In 2013, some plants were removed from the nursery due to 

visually high levels of ergot.

Selection has taken place on the materials received from The Land Institute. A subsample 

of 100 plants was chosen at random to encompass the range of plant morphology within the 

nursery to investigate yield and its components. A comparison of the two sources indicates that 

the increased grain production has resulted in a higher harvest index (Figure 2). This has in part 

been achieved by a reduction for reduced spread (Figure 3). A major result of selection appears 

to be the increase in the seed yield per unit area of the plant (Figure 4). Initial selection will 

be based upon consistency of yield between years with an emphasis towards high yield per unit 

area. This would appear to lead towards a reduced plant size (at least plant area) and potentially 

higher yields in solid-seeded plantings.

Plant establishment greatly impacts competitiveness. The ability to rapidly emerge from 

the soil and compete with other species will impact productivity. Six half-sibling families were 

selected to study the effect of seed size on germination and emergence. 
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FIGURE 2. RELATIONSHIP BETWEEN HARVEST INDEX AND SEED YIELD PLANT-1 IN IMPROVED AND NON-IMPROVED 

INTERMEDIATE WHEATGRASS

FIGURE 3. RELATIONSHIP BETWEEN PLANT AREA AND SEED YIELD PLANT-1 IN IMPROVED AND NON-IMPROVED 

INTERMEDIATE WHEATGRASS
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FIGURE 4. RELATIONSHIP BETWEEN PLANT AREA AND SEED YIELD CM-2 OF PLANTS IN IMPROVED AND  

NON-IMPROVED INTERMEDIATE WHEATGRASS
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FIGURE 5. RELATIONSHIP BETWEEN THOUSAND SEED WEIGHT AND INITIAL BIOMASS ACCUMULATION IN 

INTERMEDIATE WHEATGRASS IN THE SEVEN DAYS AFTER EMERGENCE
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Germination tests were conducted to ascertain seed viability, and emergence tests from 

a 2 cm depth (both field and greenhouse) were used to study relative ability to establish. 

Correlation between the germination tests and greenhouse emergence was high (r = 0.901), 

while emergence in the greenhouse and field was r = 0.781. Field emergence and germination 

tests showed the lowest correlation (r = 0.623). Emergence was not necessarily related to seed 

weight and the ability of plants to amass dry weight was relatively uniform for the first three 

days of emergence (Figure 5). The earlier the emergence, the greater the seedling weight after 

seven days of growth (Figure 5). This may be attributed to less energy being expended during 

emergence, thus resulting in a higher intercept value. Alternatively, early-emerging seedlings 

may possess genes contributing to rapid growth both before and after emergence.

Improving intermediate wheatgrass quality

Intermediate wheatgrass grain is currently inferior to wheat for most potential uses. Many of the 

limitations are due to a small grain size and the resulting high fibre and protein of whole grain 

flour. Small seed produces a low milling yield of white flour. Small grain size is being addressed 

through breeding, but an additional limitation is the low gluten quality that limits utility in 

raised breads. We have found that the low gluten quality of intermediate wheatgrass may be due 

to a very low quantity of HMW-GS. 

In fact, HMW-GS genes have been transferred from intermediate wheatgrass to wheat to 

improve quality (Li et al. 2013; Niu et al. 2011). Therefore, we investigated the diversity and 

potential function of HMW-GS alleles in intermediate wheatgrass. Using gene cloning, protein 

separation and identification, and sequence alignments, we were able to identify five HMW-GS 

genes and their allelic variants in intermediate wheatgrass plants. Because the species is diverse 

and heterozygous, one or two allelic variants of each gene were detected in each plant, and an 

average of five HMW-GS proteins were found in individual plants.

Protein chemistry has demonstrated that all the identified HMW-GS were involved in protein 

polymers. Sequence alignments showed that two genes share high identities (>96 percent) with 

the HMW-GS genes from the D-genome of common wheat. We predict that with selection for high 

expression of superior allelic variants, HMW-GS might contribute to the bread-making quality of 

intermediate wheatgrass.

Intermediate wheatgrass molecular work

EST markers were developed for allohexaploid intermediate wheatgrass (Thinopyrum intermedium) 

and three closely related diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and 

Thinopyrum elongatum (Table 3). 
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TABLE 3. DESCRIPTION OF ESTS AND EST MARKER RESOURCES FOR INTERMEDIATE WHEATGRASS

P. spicata Th. intermedium Th. elongatum Th. bessarabicum

Platform Sanger Roche 454 Roche 454 Roche 454

Reads (avg. bp) 16 128 566 681 (432) 447 936 (421) 364 193 (426)

Contigs (avg. bp) 6 450 (1 017) 29 851 (637) 30 858 (650) 15 700 (701)

Singletons (avg. bp) 2 330 (670) 45 760 (374) 38 216 (365) 22 709 (348)

EST isotigs (avg. bp) 8 780 (924) 75 611 (478) 69 074 (492) 38 409 (492)

Total bp 8 120 750 36 153 671 34 024 034 18 928 290

EST-SSR markers 1 375 672 596 384

Hv1a 152 98 70 68

Hv2 185 109 87 45

Hv3 172 106 90 54

Hv4 176 100 87 55

Hv5 204 98 95 77

Hv6 158 70 76 41

Hv7 187 91 71 44

a Correspondence of EST-SSR markers to the seven barley chromosomes (Hv1 to Hv7).

It is thought that the three subgenomes of allohexaploid intermediate wheatgrass may include 

one Pseudoroegneria (St) genome and two Thinopyrum (E) genomes similar to Th. elongatum (Ee) 

and/or Th. bessarabicium (Eb) genomes (Liu and Wang, 1993; Zhang et al. 1996; Zhang et al. 

1997). A total of 1 375 Pspi EST-SSR primer pairs were previously developed from P. spicata 

(Table 3) (Bushman et al. 2008). Another 1 652 EST-SSR markers were recently designed from 

Roche 454 ESTs from intermediate wheatgrass, Th. elongatum, and Th. bessarabicium (Table 3). 

All of the Thinopyrum EST-SSR markers were designed from ESTs corresponding to one of the 

seven barley (Hv) chromosomes (Table 3). Likewise, most of the previously designed P. spicata 

EST-SSR markers also correspond to one of the seven barley (Hv) chromosomes (Table 3) based 

on alignments to the barley genome sequence (The International Barley Genome Sequencing 

Consortium, 2012).

The P. spicata and intermediate wheatgrass EST-SSR primers have been tested for amplification 

and/or polymorphism in intermediate wheatgrass and related species. Approximately 79 percent 

(1 083) of the P. spicata EST-SSR primers amplified products from P. spicata (Bushman et al. 

2008). More recent experiments also showed that about 80 percent (1086) of the P. spicata 

EST-SSR primers amplified products from both P. spicata and intermediate wheatgrass. Similarly, 

about 84 percent (564) of the intermediate wheatgrass EST-SSR primers amplified products from 

intermediate wheatgrass. Moreover, about 68 percent of the intermediate wheatgrass EST-SSR 

primers amplified products from Chinese Spring wheat. 

A combination of EST-SSR and AFLP markers will be used to genotype an experimental 

mapping population comprises 268 full-sib progeny derived from reciprocal crosses of two 
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experimental genotypes, M35 × M26 (137) or M26 × M35 (131). The M26 genotype derives 

from a cross of C3-3471 × C3-3941. The C3-3941 genotype was also the female parent of 

M35. So far, six AFLP primers have also been genotyped on M26, M35, C3-3471, C3-3941 and 

268 full-sib mapping progeny. These six AFLP primers detected 133 AFLP markers that were 

polymorphic between M35 and M26 with an average marker frequency of 0.52 among the 268 

progeny. These six AFLP primers also detected 75 AFLP markers that were present in both M35 

and M26 with an average marker frequency of 0.76 among the 268 progeny. Thus, a total of 

208 polymorphic markers showing expected 1:1 or 3:1 segregation ratios were detected using 

the first six AFLP primer pairs. Another 13 AFLP markers that were present in both M35 and 

M26 showed marker frequencies greater than 0.9, which could be the result of segregation 

distortion or non-disomic inheritance. However, initial results were largely consistent with 

disomic inheritance. Although the mapping population has not yet been genotyped with 

EST-SSR markers, the M26, M35, C3-3471, and C3-3941 parents and grandparents have been 

screened using the 672 intermediate wheatgrass EST-SSR markers. Nearly 17 percent of the 

564 amplified markers showed clear polymorphism between the M26 and M35 parents of 

this intermediate wheatgrass mapping population. Thus, we estimate that approximately 

440 EST-SSR markers will be informative if this rate of polymorphism applies to P. spicata, Th. 

elongatum, and Th. elongatum EST-SSR markers.

Genotyping-by-sequencing (GBS) combines molecular marker discovery and genotyping and 

has been successfully used in species with large, complex genomes, such as barley and wheat. 

Intermediate wheatgrass is an allohexaploid with an estimated 14 GB genome and no reference 

genome. The combination of a large and understudied genome makes genetic studies and genomic 

assisted breeding for intermediate wheatgrass challenging. To address these constraints, we are 

utilizing the GBS approach to discover SNPs, and then using them to construct a genetic map 

and map important agronomic traits. 

GBS involves simultaneously sequencing DNA from many individuals, but only specific sites 

in the organism’s genome. The GBS approach increases the sequence coverage per site and 

dramatically reduces the sequencing cost per individual. These specific sites are targeted by 

restriction enzymes; for intermediate wheatgrass, we are using the restriction enzyme PstI, 

which identifies all sites in the genome with the DNA sequence ‘CTGCAG’ and cuts the DNA 

between the A and G nucleotides. A DNA barcode (unique 5-10 bp sequence) and barcode 

adapter are attached to the DNA fragments from each individual. DNA from many individuals is 

then pooled and sequenced as if it were from one individual (we sequence 96 individuals at a 

time). DNA is currently sequenced using Illumina’s HiSeq platform and SNPs are called using the 

Universal Network Enabled Analysis Kit (UNEAK) bioinformatics pipeline.

The genetic map analysis began with ~3000 high quality SNPs from 285 selfs, part of a larger 

population of ~750 selfs from one individual. Intermediate wheatgrass is primarily outcrossing, 

but a large effort was concentrated on selfing an individual with an important set of agronomic 
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traits: free-threshing, large seed and non-shattering. Preliminary phenotypic analyses suggest 

that these traits are correlated, dominant, and segregating in the selfed population. The framework 

map has been constructed with MapMaker and includes 859 SNPs from 271 individuals, divided 

into 22 linkage groups (there are 21 chromosomes). One small linkage group shows linkage with 

two larger linkage groups, but cannot be precisely placed. Preliminary analyses suggest that 

GBS can be utilized in intermediate wheatgrass for de novo genotyping to develop high-density 

genetic maps and genomic selection models for crop improvement.

Genetic studies of intermediate wheatgrass are complicated by the plant’s high degree of 

heterozygosity, hexaploid nature, and self-incompatibility. Future work would be simplified by 

access to completely inbred individuals. We have been attempting to obtain fully homozygous 

individuals by producing doubled haploids through another culture. So far approximately 

20 000 anthers have been cultured. Hundreds of calluses have formed. Dozens of calluses have 

initiated shoots, but most have been albino. We have obtained 5 plantlets that are green. The 

haploid nature of three young plants has been confirmed, and we are attempting to double their 

chromosome numbers with colchicine.

CONCLUSIONS

“Perennial wheat” hybrids and intermediate wheatgrass are currently at far ends of a spectrum. 

While the hybrid types have good grain yield, large seed, and other favourable traits, they remain 

functionally annual in most environments. On the other hand, intermediate wheatgrass is a 

vigorous perennial that is easily grown in diverse environments. But it lacks adequate seed yield, 

seed size, and grain quality to be commercially successful. Working from both directions, we expect 

that these programs will meet somewhere in the middle. Along the way, much of what is learned 

and developed in one approach will be useful to the other. For instance, genetic maps developed 

for intermediate wheatgrass will be critical for perennial wheat development. Understanding 

the physiology, morphology, phenology, and genomic functioning of perennial wheatgrass will 

be useful to those developing perennial wheat. Similarly, much that is known about the quality, 

pathology, yield, and genomics of wheat is being readily applied to intermediate wheatgrass.

We should not choose between the strategies of wide hybridization or domestication in the 

development of perennial small grains. The most rapid progress will be made by simultaneously 

working from both ends of the spectrum in order to produce perennial grain crops. Whether 

the perennial grain of the future will be wheat with grass-like traits added or a perennial grass 

with the addition of wheat-like traits is a question that we need not dwell on. What is clear is 

that progress is being made at an accelerating pace toward the day when useful, high-yield, 

long-lived small grains are a reality.
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