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Abstract
In an era of constrained and depleted natural resources, perennial grains could

provide sustainable food production along with beneficial ecosystem services

like reduced erosion and increased atmospheric carbon capture. Intermediate

wheatgrass (IWG) [Thinopyrum intermedium (Host) Barkworth & D. R. Dewey

subsp. intermedium] has been undergoing continuous breeding for domestication to

develop a perennial grain crop since the 1980s. As a perennial, IWG has required

2–5 yr per selection generation, but starting in 2017, genomic selection (GS) was

initiated in the breeding program at The Land Institute, Salina, KS (TLI), enabling

one complete cycle per year. For each cycle, ∼4,000 seedlings were profiled using

genotyping-by-sequencing (GBS) and genomic estimated breeding values (GEBVs)

were calculated. Selection based on GEBVs identified ∼100 individuals to advance

as parents each generation, while validation populations of 1,000–1,200 genets for

GS model training were also selected using the genomic relationship matrix to repre-

sent genetic diversity in each cycle. The selected parents were randomly intermated

in a greenhouse crossing block to form the subsequent cycle, while the validation

populations were transplanted to irrigated and nonirrigated field sites for phenotypic

evaluations in the following years. For priority breeding traits of seed mass, free

threshing, and nonshattering, correlations between predicted values and observed

data were >.5. The realized selection differential ranged from 11–23% for selected

traits, and the expected genetic gains for these traits, including spike yield, ranged

from 6 to 14% per year. Genomic selection is a powerful tool to speed the domesti-

cation and development of IWG and other perennial crops with extended breeding

timelines.

Abbreviations: BLUP, best linear unbiased predictor; GBS,

genotyping-by-sequencing; GEBV, genomic estimated breeding value; GS,

genomic selection; IWG, intermediate wheatgrass; SNP, single nucleotide

polymorphism; TLI, The Land Institute.
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1 INTRODUCTION

Agriculture faces tremendous challenges in the coming

decades. World population is expected to exceed 9 billion peo-

ple by 2050, (Godfray et al., 2012) demanding nearly dou-

bling food production from 2005 levels (Tilman et al., 2011).
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Agriculture will also be expected to provide this increased

production in a more sustainable manner by requiring less

land, reducing soil erosion, and increasing carbon capture

(Godfray et al., 2012). Coupled with less-favorable climates,

these immense pressures will require extraordinary efforts to

develop sustainable and resilient cropping systems to meet

future demands.

One potential avenue to address these challenges is the

development of perennial grain crops. Perennial crops could

provide ecosystem benefits of reduced soil erosion by limiting

the annual disruption of the soil (Crews et al., 2018), reduced

nitrate leaching (Culman et al., 2013; Jungers et al., 2019), and

increased carbon capture (Sprunger et al., 2018). Currently,

there are no widely grown perennial grain crops, but several

perennial ecotypes of annual species are being evaluated for

wheat (Triticum aestivum L.), sorghum [Sorghum bicolor (L.)

Moench], rice (Oryza sativa L.), and sunflower (Helianthus
annuus L.) (Cox, Van Tassel, Cox & Dehann, 2010). One

of the most promising candidates for a perennial grain crop

is intermediate wheatgrass [Thinopyrum intermedium (Host)

Barkworth & D. R. Dewey subsp. intermedium] (IWG), which

is marketed under the trade name Kernza (DeHaan & Ismail,

2017).

Intermediate wheatgrass was selected for domestication

from an evaluation of over 100 perennial grasses in the 1980s

by work at the Rodale Institute, Kutztown, PA (Wagoner,

1990). Since that time, five breeding programs have been

established with material originally developed by the Rodale

Institute and USDA’s Big Flats Plant Material Center, Corn-

ing, NY (Zhang et al., 2016). The Land Institute (TLI) at

Salina, KS, has been a leader in domesticating IWG, tak-

ing over breeding from Rodale in 2001 and completing six

cycles of selection by 2017. This breeding work has mainly

focused on improving key domestication and agronomic traits

such as grain yield, free-threshing seed, and reducing shatter-

ing (DeHaan et al., 2018). These results have been promis-

ing, with estimated accumulated gains reaching 143, 181, and

60% over five cycles of selection for seed yield, increased

free-threshing, and increased seed size, respectively (DeHaan

et al., 2018). Even with these impressive gains, it is pre-

dicted that at least 20 yr of sustained genetic gain will be

required to achieve grain yields similar to wheat and 100 yr

to achieve the same seed mass as wheat (DeHaan et al.,

2014).

Genomic selection (GS) is a breeding method that uses

dense molecular markers so that each quantitative trait loci

(QTL) is in linkage disequilibrium with a marker, allowing

the total genetic value of individuals to be predicted only

from genotypic information (Meuwissen et al., 2001). As

IWG is a perennial crop, the phenotypic breeding cycle is

often multiple years (DeHaan et al., 2018), allowing GS

to potentially reduce breeding cycle time within this crop

(Heffner et al., 2010; Wong & Bernardo, 2008). Zhang et al.

Core Ideas
∙ Three cycles of genomic selection were completed

in intermediate wheatgrass.

∙ Realized selection differentials ranged from 11 to

23% for priority traits.

∙ Expected annual gains were 6–14% for free thresh-

ing, shattering, seed mass, and yield.

∙ Correlation of GEBVs to observed data for 37 of

46 traits was >.3.

∙ Genomic selection provides a tractable method to

improve perennial traits.

(2016) published the first account of GS in IWG and showed

that GS could have high predictive ability and increase the

rate of domestication in IWG. Work at TLI showed that

GS could result in up to a 2.6-fold increase in genetic gain

(Crain et al., 2021) for spike yield compared with phenotypic

selection. Using 8 yr of data spanning five cycles of selection

and two breeding programs (TLI and University of Min-

nesota), Crain et al. (2020a) showed that key domestication

traits, such as free-threshing and reduced shattering, had

high predictive ability regardless of the environment used

to train the GS model. Other work has shown that incorpo-

rating genome-wide association studies and genotype-by-

environment interactions into GS models can increase the

accuracy of GS prediction in IWG (Bajgain et al., 2019,

2020).

While this growing body of research has shown the power

of GS within IWG, all of these studies have looked at predic-

tion accuracy with cross-fold validation within datasets but

have not made or evaluated forward predictions to the next

cycle in the breeding program. In order to reduce the domesti-

cation timeline and time to a perennial grain crop, TLI adopted

GS within the breeding program beginning in 2017. Using the

breeding strategy presented in Crain et al. (2021), the breeding

cycle has been reduced to 1 yr, with breeding Cycles 7, 8, and

9 being completed in 2017, 2018, and 2019, respectively. Thus

three cycles of selection have been completed in the time that

would be required to complete one cycle of phenotypic selec-

tion with 2 yr of phenotypic data evaluation (DeHaan et al.,

2018).

Here we evaluate the effectiveness of the TLI GS program.

Specifically, our objectives are to (a) determine the forward

prediction accuracy between GS predictions and observed

values, (b) examine the challenges of completing one cycle

of selection per year, and (c) evaluate the trait means of GS

selected plants vs. unselected plants to estimate the rate of

genetic gain.
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2 MATERIALS AND METHODS

2.1 Plant material and phenotypic
evaluation

Breeding cycles used in this study include material from

TLI-Cycles 6 through 9, with each cycle described below.

To maintain consistency with Zhang et al. (2016), we will

refer to genetically unique individuals as genets, with geno-

type referring to the genetic makeup of the genet. Typ-

ically, genets are initially single plants, but for perennial

species they can be cloned to create multiple individual

plants with identical genetic makeup, which are then termed

ramets.

2.2 TLI-Cycle 6

The formation of TLI-Cycle 6 has been described in detail

in DeHaan et al. (2018). Briefly this cycle of selection con-

sisted of 20,360 genets representing 365 unique full-sib fami-

lies from 109 unique parents. Genets were started in the green-

house and transplanted to the field in the fall of 2015. Genets

were unreplicated, and no common checks were used based

on the difficulty of cloning sufficient number of ramets of

check genets. The genets were arranged in a grid with 91 cm

between rows and 61 cm between columns allowing for a spa-

tial correction based on location within the grid. Phenotypic

evaluation for a wide range of traits was completed during the

summers of 2016 and 2017, with emphasis on priority traits of

free-threshing seed, reduced shattering, spike yield, and seed

mass. For all cycles of data, we analyzed multiple years of the

same trait type, that is, shattering observed in 2016 and 2017

separately.

After 2 yr of phenotypic evaluation, 89 TLI-Cycle 6 plants

were selected as parents to begin the TLI-Cycle 7 genera-

tion. These parents were selected by ordering the best linear

unbiased predictors (BLUPs; described below) of the traits

for each genet, with emphasis on priority traits, and choos-

ing individuals that possessed the best values for most of the

traits under selection (DeHaan et al., 2018). These 89 genets

(individual plants) were dug from the field and cloned four to

eight times into individual pots. To prevent relative maturity

from affecting random intermating, the ramets were separated

into two groups by genet, with the first and second group of

genets entering the greenhouse 2 wk apart. The plants were

randomly placed on capillary watering mats on the floor and

rearranged every 3–5 d during anthesis to favor random inter-

mating. Oscillating fans were also used to aid pollen dis-

persion within the greenhouse. An average temperature of

20.6 ˚C was maintained in the greenhouse, with a range

between 16.7 and 25.0 ˚C. Day length was maintained at 16

h with supplemental lighting provided with 1000-W metal

halide lamps when ambient light was below 240 umol m2 s−1

photosyntetically active radiation.

2.3 TLI-Cycle 7

Cycle 7 seed was harvested and ∼50 seeds from each mater-

nal half-sib family were started in Q Plugs (International

Horticultural Technologies) sized 30 mm in diameter by

55 mm deep in late July 2017. Tissue collection for genotyp-

ing (genetic profiling) began in early September 2017, with

∼45 genets per each mother being selected based on visual

selection to remove seedlings with low vigor. In total, 4,170

genets were sampled for DNA extraction and genomic selec-

tion (GS).

Using genomic estimated breeding values (GEBVs, output

from a GS model; described below) derived from a training

model using only TLI-Cycle 6 phenotypic data, we selected

genets with emphasis on free threshing, shattering, spike

yield, and seed mass to identify 118 genets to be the par-

ents for TLI-Cycle 8. Selection of these parents was similar to

TLI-Cycle 7 parents with manual selection index. These par-

ent plants were transplanted to 3.8-L pots, allowed to tiller,

and then divided into four ramets each that were established

in separate 3.8-L pots. To induce flowering, selected plants

were placed in a vernalization chamber set at 4 ˚C with

10 h days. Two ramets of each genet were vernalized for 7 wk,

and the second two for 9 wk so that early and late-flowering

genets would have opportunity to intermate. Random inter-

mating in the greenhouse was accomplished in the same man-

ner as described in TLI-Cycle 7.

After the parent plants were identified, we used the

genomic relationship matrix (K; genomic prediction) to iden-

tify genets to place in the TLI-Cycle 7 validation population.

In order for the validation population to represent the selected

parents, we choose 1,047 plants that were the most closely

related to each of the selected parents. This was accomplished

through an iterative process for each parent that selected the

genets with the highest value in K between each parent and

the remaining ∼4,000 individuals. We also insured that each

half-sib family had a minimum of five genets in the validation

population. To capture the diversity of TLI-Cycle 7, we then

selected 100 plants that had the lowest K values compared

with the parent plants. Finally, a random subset of 231 genets

were added to replace any individuals that had died. This

resulted in a validation set with three unique subgroups—most

closely related, most distantly related, and random subsets—

with the validation population being weighted toward the

selected parents. Principal component analysis of the marker

matrix for these genets was used to verify these partitions.

The validation population individuals were transplanted to

Jiffypots (Jiffy Products of America) sized 45 mm square

and 55 mm deep to allow vigorous growth prior to field
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establishment. The TLI-Cycle 7 validation population was

randomly divided, with 600 of the plants being planted

in a location with irrigation (internal field code KEB,

38˚46′18.23″ N, 97˚34′8.11″ W) and the remaining plants in a

nonirrigated location (internal field code KOH, 38˚46′21.84″

N, 97˚35′31.76″ W). Plants were arranged randomly in the

field locations, that is, plantings did not follow any known

family structure, with each plant a unique genet with no

replication or common check genet. These plants were trans-

planted during the last week of October 2017 and spaced on

a uniform grid of 0.91-m centers to allow for spatial correc-

tion of phenotypic data. Phenotypic evaluation was performed

in 2018 and 2019. After the parents were intermated to pro-

duce TLI-Cycle 8 seed in 2018, one ramet of each parent was

placed in the field alongside each experimental location using

the same planting design and phenotypically evaluated begin-

ning in 2019.

2.4 TLI-Cycle 8

TLI-Cycle 8 seed was harvested from the 109 unique

TLI-Cycle 7 maternal genets that produced seed. Simi-

lar to TLI-Cycle 7, 40–70 seeds from each half-sib fam-

ily were started in Jiffypots sized 45 mm square and

55 mm deep in early August 2018. Tissue collection for geno-

typing (genetic profiling) began in early September 2018, with

∼45 genets per each mother being sampled based on visual

selection to remove seedlings with low vigor. In total, 5,130

genets were sampled for DNA extraction and GS.

Using the GEBVs and manual selection similar to previous

cycles, 98 parents were selected to intermate to form the TLI-

Cycle 9 population. These parents were selected with GEBVs

derived from the phenotypic data of TLI-Cycle 6 and the TLI-

Cycle 7 validation population. In addition to using TLI-Cycle

8 plants, five parents were selected from the TLI-Cycle 7 val-

idation population based on phenotypic performance and one

additional plant was added because of its large seed size (iden-

tified in a separate evaluation) for a total of 104 parents. These

genets were moved directly into the greenhouse and followed

similar protocol for cloning, vernalizing, and intermating as

TLI-Cycle 7.

The TLI-Cycle 8 validation population was made of plants

randomly selected from among the genotyped individuals,

after the selected parents had been removed, with a total of

1092 genets. Genets were divided between an irrigated (572

genets at KEB) and a nonirrigated site (520 genets at KOH)

and transplanted in late October 2018. Similar to the TLI-

Cycle 7 validation population, there were no replications or

check genets, and genets were randomly distributed on a uni-

form grid spacing of 0.91 m. After greenhouse intermating

was complete, parent plants were placed in rows adjacent

to the validation population in spring 2019. As these plants

had already been cloned, one ramet from each parental genet

was established in a randomized order in each of the two

sites.

2.5 TLI-Cycle 9

In early August 2019, the TLI-Cycle 9 population was ini-

tiated by planting seed in Jiffypots sized 45 mm square and

55 mm deep. Similar to previous cycles, ∼50 seeds were

started for each maternal half-sib family, with visual selec-

tion for plants to genotype. In total, 4,174 genets were geno-

typed for GS. TLI-Cycle 9 parents were formed by selecting

100 genets using GEBV developed from phenotypic data from

TLI-Cycle 6, 7, and 8, with 1,004 genets randomly selected

to form the validation population. In October 2019, the val-

idation population was planted with no replication or check

genets on a 0.91-m grid across an irrigated (504 genets at

KEB) and a nonirrigated site (500 genets at KOH).

2.6 Genomic profiling

All genomic profiling was completed using genotyping-by-

sequencing (GBS) with a two-enzyme restriction digest as

described by Poland et al. (2012). All genets were pooled

into 192-plex libraries that were sequenced on Illumina HiSeq

machines at Hudson Alpha, Huntsville, AL. For TLI-Cycle

7–9, there were often a large number of samples with limited

read coverage. For TLI-Cycle 7 genets with low sequencing

data, plants were resampled with an additional 192-plex run

on an Illumina NextSeq, whereas TLI-Cycle 8 resequencing

protocol was similar to original runs.

Single nucleotide polymorphisms (SNPs) were called with

the TASSEL GBSv2 pipeline (Glaubitz et al., 2014) using

the draft genome assembly of Thinopyrum intermedium
provided by the Thinopyrum intermedium Genome Sequenc-

ing Consortium (https://phytozome-next.jgi.doe.gov/info/

Tintermedium_v2_1). For each cycle of prediction, (TLI-

Cycle 7, 8, 9) the GBS pipeline was run separately while

including all samples from current and previous cycles

using consistent filtering parameters across cycles. This

allowed genetic variants to be continuously identified within

each breeding cycle from changing allele frequencies and

incorporation of novel germplasm (i.e. inclusion of a large

seed size genet in TLI-Cycle 8). Filtering consisted of the

following: (a) only retaining 64-bp tags that aligned to one

location in the genome, thus preventing homoelogous loci

from being combined; (b) sequencing depth >4 per loci per

individual were required to call a homozygous genotype. If

a SNP site had less than four reads, it was set to missing

using a custom Perl script. Heterozygotes were called with

a minimum of two contrasting tags per locus; (c) maximum

https://phytozome-next.jgi.doe.gov/info/Tintermedium_v2_1
https://phytozome-next.jgi.doe.gov/info/Tintermedium_v2_1
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missing data per marker was 70%; (d) SNPs with a minor

allele frequency <0.01 were discarded; and (e) individuals

that had >95% missing data were eliminated from further

analysis. After filtering, remaining SNPs were imputed with

Beagle version 4.1 using the default parameters (Browning

& Browning, 2016). The number of SNPs before and after

filtering and the number of individuals for each cycle are

provided in Supplemental Table S1.

2.7 Phenotypic analysis

Across all years and cycles, all key traits for selection in addi-

tion to secondary traits were collected. The most important

traits for the breeding program were free threshing, shatter-

ing, spike yield, and seed mass; other traits that were recorded

and the range of values are listed in Supplemental Table S2.

Analysis was completed for each cycle and trait to evaluate the

effectiveness of the GS selection and to update the GS models

for future prediction cycles.

For all cycles, a mixed model was used to develop BLUPs

for each genet using ASREML version 4.1 (Gilmour et al.,

2015), with BLUP denoting output from the mixed model for

observed phenotypic data. The model accounted for spatial

effects using a row–column autoregressive order 1 (AR1 ×
AR1) model of residual variance, relatedness among genets

using the genomic relationship matrix, and random effects for

male, female, and parent interaction. This model, or minor

variations, has previously been used by TLI within the breed-

ing program (Crain et al., 2020a, 2021; DeHaan et al., 2018).

The general form of the model is as follows (Isik et al., 2017):

y = Xb + Zu + e (1)

Where y is a vector of observed trait, X and Z are inci-

dence matrix for fixed and random effects that relate observed

trait values to genets, b and u are vectors of effect esti-

mates for fixed and random model components, and e is

a vector of random residuals. The vector y is normally

distributed with mean Xb and variance V, 𝑦 ∼ 𝑁(𝑋𝑏, 𝑉 ).
The total variance, V can be represented as 𝑉 =

(
𝑢

𝑒

)
=(

𝐺 0
0 𝑅

)
, where G is the variance of random genets using

the genomic relationship matrix, and R is the residual vari-

ance using the row-column design. The G component can

further be defined as G = σ2
𝐴

K, where K is the real-

ized additive genomic relationship matrix (genomic pre-

diction) and σ2
𝐴

is the additive genetic variance. The R
structure is separately defined for each experiment site as

R = σ2
𝑒
Σ𝑐(ρ𝑐)⊗ Σ𝑟(ρ𝑟) where σ2

𝑒
is the residual error vari-

ance that is normally and independently distributed for each

site, and Σ𝑐(ρ𝑐) is the matrix of the column (row) correlation.

Using the mixed model, we assessed TLI-Cycle 7 and 8

independently, with R comprised of two sites for the irri-

gated and nonirrigated site. The BLUPs were compared with

the GEBVs to assess GS prediction accuracy. The GS train-

ing population reflected the data that had been observed and

was updated accordingly. For TLI-Cycle 7 prediction, the only

training data was TLI-Cycle 6, which comprised one site loca-

tion. For TLI-Cycle 8 predictions, the R structure included

three factors (TLI-Cycle 6, TLI-Cycle 7—KEB and KOH—

where KEB and KOH are identifies of irrigated and nonirri-

gatyed sates), increasing to five separate factors for TLI-Cycle

9 prediction (TLI-Cycle 6, TLI-Cycle 7—KEB and KOH—

and TLI-Cycle 8—KEB and KOH).

Equation 1 also provided variance ratios to compute

narrow-sense heritability (h2) as follows (Jordan et al., 1999):

ℎ2 =
σ2additive
σ2phenotypic

(2)

where

σ2phenotypic = σ2a + σ2m + σ2f + σ2m×f + σ2a× site σ
2
ε (3)

and σ2
phenotypic

is the total variance; σ2
𝑎

is the additive genetic,

or breeding value variance (Falconer & Mackay, 1996); σ2
𝑚

,

σ2
𝑓

, and σ2
𝑚×𝑓 , is the nonadditive variance attributable to

mother, father, and mother × father interaction, respectively

(Lynch & Walsh, 1998; Isik et al., 2017; Mrode, 2005),

σ2
𝑎×𝑠𝑖𝑡𝑒is the genet (genotype) × site interaction, and σ2ε is the

residual error variance.

In addition to evaluating GS effectiveness and updating the

GS model, we also evaluated TLI-Cycle 7 data within each

year and trait to examine the magnitude of change in the breed-

ing program through GS. As the TLI-Cycle 7 validation pop-

ulation had distinct subsets, we used a linear model to deter-

mine if these subsets varied based on the effect of selection.

We used GEBVs (genomic prediction) that were previously

predicted from the GS models to choose the highest perform-

ing 150 individuals for each trait to compare with the dis-

tantly related and random subsets. Choosing the top 150 indi-

vidual allowed for this group to most closely mirror the par-

ent population as adding more individuals would result in a

more divergent group from the parents. In 2019, the genets

selected to form the TLI-Cycle 8 generation were also eval-

uated in the field, providing an opportunity to estimate the

magnitude of selection within the population. This allowed

for two distinct groups from the same cycle—selected par-

ents and unselected validation population—to be compared

to determine the realized selection differential, the differ-

ence between the two groups. For TLI-Cycle 7 we were able

to both calculate the realized selection differential and the

expected differential based on GEBVs. For both determin-

ing TLI-Cycle 7 validation population subset effect and the
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realized selection differential, we used the following linear

model:

𝑦𝑖𝑗 = 𝑢 + α𝑖 + β𝑗 + (αβ)𝑖𝑗 + 𝑒𝑖𝑗 (4)

where yij is the observed trait value of the ith group and jth
location, u is the overall mean, α is the fixed group effect

(either TLI-Cycle 7 subset, or parent–nonparent for each

model respectively), β is the fixed effect of experimental site,

(αβ)ij is the interaction between factors i and j, and eij is the

residual error. Multiple comparison for group effects were

made with Fisher’s LSD using the agricolae R package (de

Mendibury, 2020). This model was chosen as the placement

of selected parents were not randomized, on the edge of sites,

within the TLI-Cycle 7 validation population and the AR1 ×
AR1 model would have been inappropriately biased. For the

comparison of parents and nonparents, a Wald test was used

to determine if the group effect was significant.

The breeders equation (Falconer & Mackay, 1996):

𝑅 = 𝑆ℎ2 (5)

was used to estimate the genetic gain achieved through GS

selections as well predict potential genetic gain from using

GS within the breeding program. In Equation 5, R is the

response to selection, S is the selection differential, and h2 is

the narrow-sense heritability. Dividing the response to selec-

tion by years to complete the breeding cycle results in genetic

gain per year.

2.8 Genomic prediction

All genomic predictions, GEBVs (Calus, 2010), were com-

pleted using the rrBLUP package (Endelman, 2011). The pre-

diction model has the following form:

y = Wg + e (6)

where y is a vector of BLUPs calculated from Equation 1, W
is a matrix relating genets to BLUPs, g is a vector of geno-

typic values for each genet, and e is a vector of random resid-

uals. The vector g is distributed as g ∼ N(0,Kσ2
𝑔
), where K

is the realized additive relationship matrix calculated accord-

ing to Endelman and Jannink (2012) and σ2
𝑔

is the additive

genotypic variance; K is computed as θMM’ where θ is a

proportionality constant and M is the genotype matrix with

dimension of n rows of individuals and m columns of mark-

ers. For each cycle, the model was trained on all previous

data for year of phenotypic observation, for example, free-

threshing Year 1 collected from TLI-Cycle 6 and 7 was used

to predict free-threshing Year 1 for TLI-Cycle 8, with predic-

tions being made on the seedling genets that had been geno-

typed. Pearson correlations and confidence intervals between

GEBVs and BLUPs for traits were calculated using the psy-
chometric R package (Fletcher, 2010)

2.9 Data availability

The genotypic datasets are available at NCBI sequence read

archive (https://www.ncbi.nlm.nih.gov/bioproject/) as part of

the umbrella BioProject PRJNA609325. All phenotypic data

and the scripts created for data analysis have been placed in

the Dryad Digital Repository (https://doi.org/10.5061/dryad.

zw3r2285n).

3 RESULTS

Beginning in 2017, TLI implemented a GS program, com-

pleting one cycle of selection per year. Ideally, this method

will increase the rate of genetic gain and accelerating domes-

tication and improvement of this new perennial grain crop.

Using data from 2017 through 2019, we evaluated three lines

of evidence to evaluate the effectiveness of GS. First, we

examined the correlation between forward GS predictions and

the observed value from evaluation in subsequent years. Sec-

ond, we investigated the established subgroups of the valida-

tion population testing if individuals most closely related to

the selected parents had superior performance. Finally, using

the perennial nature of IWG, we evaluated the superiority of

selected parents per se compared with unselected populations.

Using this information, we calculated the realized selection

differential and the expected genetic gain from GS.

3.1 Correlation between GEBV and
observed phenotypes

Genomic selection was used to make forward predictions, and

observed phenotypes in the following years were generally

significantly related to predicted values. For the TLI-Cycle

7 validation population, we predicted 32 unique trait–year

combinations across two separate years (Table 1). Because

of the perennial crop cycle, we modeled and predicted each

year of observation—the first or second year in the field for

each cohort—separately for each trait. For the TLI-Cycle 8

validation population, there have been 14 traits evaluated in

1 yr, 2019. The correlation between GEBVs and the pheno-

typic BLUPs for each of the 46 traits ranged from 0.02 to

0.76 (Table 1). The priority traits—free threshing, shattering,

and seed mass—had high prediction accuracy with all accu-

racy >0.52, yet spike yield had the lowest observed accura-

cies ranging from 0.02 to 0.27 (Figure 1). The high prediction

accuracy for these traits was consistent both across years and

https://www.ncbi.nlm.nih.gov/bioproject/
https://doi.org/10.5061/dryad.zw3r2285n
https://doi.org/10.5061/dryad.zw3r2285n
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T A B L E 1 Relationship between predicted genomic estimated breeding values and best linear unbiased predictor values for TLI-Cycle 7 and

TLI-Cycle 8 traits collected over two years, 2018 and 2019. Table includes the number of observations, 95% confidence interval for correlation

values, and narrow-sense heritability (h2) for each observed trait year and cycle combination. Priority traits are in bold

Cycle Year Trait n
Correlation between predicted
GEBV and observed BLUP

95% confidence
interval h2

TLI-Cycle 7 2018 Free threshing (%) 851 0.75 0.72–0.78 0.77
TLI-Cycle 7 2019 Free threshing (%) 1165 0.76 0.74–0.79 0.75
TLI-Cycle 8 2019 Free threshing (%) 870 0.58 0.54–0.63 0.83
TLI-Cycle 7 2018 Maturity 1157 0.54 0.49–0.58 0.64

TLI-Cycle 7 2018 Number of florets per

spike

1140 0.13 0.07–0.19 0.43

TLI-Cycle 7 2019 Number of florets per

spike

1168 0.41 0.36–0.46 0.57

TLI-Cycle 8 2019 Number of florets per

spike

871 0.42 0.36–0.47 0.24

TLI-Cycle 7 2018 Number of florets per

spikelet

1140 0.02 −0.04 to 0.08 0.39

TLI-Cycle 7 2019 Number of florets per

spikelet

1168 0.34 0.28–0.39 0.56

TLI-Cycle 8 2019 Number of florets per

spikelet

871 0.41 0.35–0.46 0.77

TLI-Cycle 7 2018 Percentage seed set 1134 0.55 0.51–0.59 0.52

TLI-Cycle 7 2019 Percentage seed set 1162 0.32 0.26–0.37 0.32

TLI-Cycle 8 2019 Percentage seed set 862 0.23 0.17–0.29 0.44

TLI-Cycle 7 2018 Plant height (cm) 1152 0.50 0.46–0.54 0.47

TLI-Cycle 7 2019 Plant height (cm) 1176 0.18 0.12–0.23 0.48

TLI-Cycle 8 2019 Plant height (cm)t 959 0.47 0.42–0.52 0.41

TLI-Cycle 7 2018 Seed area (mm2) 851 0.58 0.53–0.62 0.66

TLI-Cycle 7 2019 Seed area (mm2) 1165 0.67 0.64–0.70 0.59

TLI-Cycle 8 2019 Seed area (mm2) 865 0.53 0.48–0.58 0.52

TLI-Cycle 7 2018 Seed density 848 0.34 0.28–0.40 0.46

TLI-Cycle 7 2019 Seed density 1163 0.52 0.47–0.56 0.56

TLI-Cycle 8 2019 Seed density 865 0.52 0.47–0.57 0.60

TLI-Cycle 7 2018 Seed length (mm) 851 0.66 0.62–0.69 0.04

TLI-Cycle 7 2019 Seed length (mm) 1165 0.70 0.67–0.73 0.03

TLI-Cycle 8 2019 Seed length (mm) 865 0.53 0.48–0.58 0.72

TLI-Cycle 7 2018 Seed mass (mg) 848 0.53 0.48–0.57 0.51
TLI-Cycle 7 2019 Seed mass (mg) 1163 0.67 0.64–0.70 0.52
TLI-Cycle 8 2019 Seed mass (mg) 865 0.52 0.47–0.57 0.80
TLI-Cycle 7 2018 Seed width (mm) 851 0.51 0.46–0.56 0.09

TLI-Cycle 7 2019 Seed width (mm) 1165 0.61 0.57–0.64 0.01

TLI-Cycle 8 2019 Seed width (mm) 865 0.61 0.56–0.65 0.40

TLI-Cycle 7 2018 Seeds per spike 1135 0.49 0.44–0.53 0.43

TLI-Cycle 7 2019 Seeds per spike 1163 0.24 0.18–0.29 0.26

TLI-Cycle 8 2019 Seeds per spike 862 0.18 0.12–0.24 0.62

TLI-Cycle 7 2018 Shattering 1141 0.73 0.70–0.75 0.53
TLI-Cycle 7 2019 Shattering 1168 0.74 0.72–0.77 0.60
TLI-Cycle 8 2019 Shattering 871 0.71 0.68–0.74 0.59
TLI-Cycle 7 2018 Spike length (cm) 1142 0.51 0.47–0.56 0.54

TLI-Cycle 7 2018 Spike yield (g) 1141 0.27 0.22–0.33 0.41

(Continues)
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T A B L E 1 (Continued)

Cycle Year Trait n
Correlation between predicted
GEBV and observed BLUP

95% confidence
interval h2

TLI-Cycle 7 2019 Spike yield (g) 1169 0.16 0.11–0.22 0.32
TLI-Cycle 8 2019 Spike yield (g) 868 0.02 −0.05 to 0.09 0.66
TLI-Cycle 7 2018 Spikelets per

inflorescence

1140 0.50 0.46–0.54 0.24

TLI-Cycle 7 2019 Spikelets per

inflorescence

1169 0.42 0.37–0.47 0.35

TLI-Cycle 8 2019 Spikelets per

inflorescence

871 0.35 0.29–0.41 0.26

TLI-Cycle 7 2018 Stem angle 1180 0.55 0.51–0.59 0.55

TLI-Cycle 7 2018 Stem strength 997 0.42 0.37–0.47 0.56

cycles. Spike yield had low prediction accuracies across both

years and cycles of observations; additionally, spike yield was

consistently one of the most difficult traits to predict. There

was also a significant trend (r = .57, p < .001) that prediction

accuracy was positively correlated with heritability.

3.2 Effect of selected subgroups within
validation population

The TLI-Cycle 7 validation population was selected with

three distinct subgroups: genets closely related to the selected

parents (closely related), genets distantly related (distantly

related), and a random subset (Figure 2). This partitioning

provided a way to test if GS could identify superior genets

and effectively shift the population mean. The closely related

group was significantly superior to the distantly related group

for free threshing, shattering, and seed mass, which are under

strong selection within the breeding program. The random

additions were also inferior to the closely related group for

these traits (Table 2) suggesting that the GS model was cor-

rectly predicting genet performance and driving selection.

For spike yield, there were no significant differences

between the close and distantly related groups in 2018, with

the closely related group being significantly better than the

distantly related group in 2019. Surprisingly, the random

group performed as well as the most closely related group in

2019, yet in 2018, this group was significantly worse than the

closely related group (Table 2). For traits that had no direct

selection pressure, such as seeds per head, lodging, and per-

centage fertility, there were no differences between the dis-

tantly and closely related groups, indicating minimal genetic

correlation and limited impact of indirect selection on other

traits. Several traits, however, did have significant differences

such as seed length and seed width. These traits were not

direct selection targets but maybe have been indirectly a result

of correlations between those traits and the priority traits of

seed mass and grain yield. The partitioned TLI-Cycle 7 val-

idation population showed that GS was shifting trait pheno-

types according to selection preferences.

3.3 Realized selection differential

Leveraging the perennial nature of IWG, the TLI-Cycle 7

selected parents were placed in the TLI-Cycle 7 validation

population fields after intermating to evaluate if the GS

selected parent genets had superior performance to non-

selected genets. In 2019, we observed trait values for the

selected parents compared with the validation population

(Table 3) and calculated the mean between these two groups

as the realized selection differential. These realized selection

differentials were also compared with the differences in

GEBVs for the selected parents and the validation popula-

tions. For nearly all traits, there was a significance difference

between the selected parents and validation population. For

priority traits the realized selection differentials were 19%

higher for free threshing, 23% less for shattering, 11% higher

for seed weight, and 22% higher for spike yield (Figure 3).

Traits not targeted by selection, such as plant height and

maturity, showed no difference between the groups. Overall,

the expected selection differential, based solely on GS

predicted values, and the observed selection differentials

were highly correlated (r = .69, p = .007) providing evidence

that the models were accurately predicting plant phenotypes

and enabling GS.

3.4 Expected genetic gain

We calculated the expected genetic gain for 19 pheno-

typic traits using the realized selection differential (Table 3).

Priority traits under selection were expected to show gains of

eight percentage points for free threshing, 0.36 units for less

shattering, 0.54 mg higher seed mass, and 0.04 g increase in
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F I G U R E 1 (a–l) Panels represent the relationship between normalized genomic estimated breeding value (x axis) and best linear unbiased predic-

tor value (y axis) for each trait. Each panel represents one trait year combination for the TLI-Cycle 7 or TLI-Cycle 8 intermediate wheatgrass breeding

program. Genomic prediction for TLI-Cycle 7 were completed in 2017 with phenotypic observations in 2018 and 2019. TLI-Cycle 8 predictions were

made in 2018 with phenotypic observations in 2019. Panels include line of best fit and correlation for each trait
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F I G U R E 2 Scatterplot of the first (x axis) and second (y axis) principal components (PCs) for the TLI-Cycle 7 selected individuals. Individual

genets are plotted by color and symbol to their respective group. Total variance explained by each PC is listed in the axes

spike yield. Traits under no selection showed very little move-

ment from the population mean. For example, plant height is

expected to increase 0.16 cm and had a nonsignificant differ-

ence of only 0.34 cm even with high heritability of the trait

(h2 = .48). These expected gains indicate that GS can be used

to rapidly improve IWG traits.

4 DISCUSSION

4.1 TLI breeding pipeline

The TLI IWG breeding program has now completed three

cycles of selection in 3 yr using GS to select parents and

validation populations from ∼4,000 genets each cycle. Since

2017, ∼40,000 phenotypic data points have been collected

each year to refine the GS models. Logistically, there are sev-

eral issues that programs transitioning to GS should be ready

to address to complete the entire breeding cycle in a defined

timeline (Figure 4). Running a GS program requires com-

pleting both phenotypic and genotypic analyses simultane-

ously. Often, as data is being collected in the field from val-

idation populations in late summer, the next cycle of selec-

tion has to be started in the greenhouse to allow sufficient

time for all genotyping to be completed. Additionally, as more

data is collected, the statistical models, using both genomic

and spatial information, take longer to complete. During the

breeding cycle, the statistical models to generate GS training

BLUPs have already been developed and are only ran to add

the newest data. Any new model development, and associated

time delay, occurs outside the short window (90 d) of mak-

ing selections and advancements in the breeding cycle. The

genotyping timeframe is constrained by having a late Octo-

ber planting deadline to ensure plants moved to the field can

grow sufficiently to survive the winter. To efficiently pro-

cess the volume of samples from DNA extraction to sequenc-

ing, data is processed in batches often resulting in the first

sequencing data being received from core facilities before the

final GBS libraries are completed. From starting genets in the

greenhouse until final selections are planted in the field or

greenhouse, the timeframe that the IWG breeding program

has to complete genotyping, quality control, genomic predic-

tions, selections, and transplanting is 90 d. Efficient data man-

agement and processing pipelines are required to quickly and

carefully process the millions of datapoints generated from

sequencing and the thousands of phenotypic data points that

must be analyzed within the GS pipeline. While Zhang et al.

(2016) propose a 2-yr breeding cycle for GS within IWG,

this slower rate directly impedes the rate of genetic gain com-

pared with completing one breeding cycle per year. The dis-

tinct advantage of GS can be realized specifically when cycle

time is reduced.

4.2 Effectiveness of GS

Numerous studies predict that GS can be used to increase

the rate of genetic gain in IWG (Bajgain et al., 2020; Crain
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T A B L E 2 TLI-Cycle 7 validation population traits observed over 2 yr, 2018 and 2019. The validation population was structured into three

groups that were closely related, distantly related, and a random group compared with the selected parents. For each trait, the mean for each group is

reported and groups having different letter codes are statistically different using Fisher’s LSD at p < .05. Priority traits are in bold

Year Trait Distantly related Closely related Random
2019 Brittle rachis 0.31a 0.29a 0.28a

2018 Free threshing 52.37c 86.43a 74.25b
2019 Free threshing 30.53c 79.04a 49.77b
2019 Lodging 6.40a 6.05a 5.78a

2018 Maturity 58.37a 59.42a 55.55b

2019 Maturity 64.80a 64.85a 65.25a

2018 Number of florets per spike 200.74ab 204.93a 189.54b

2019 Number of florets per spike 147.01b 170.43a 153.93b

2018 Number of florets per spikelet 9.22a 8.99a 9.04a

2019 Number of florets per spikelet 6.58a 6.83a 6.59a

2019 Peduncle width 9.77a 9.74a 9.95a

2018 Percentage seed set 0.10a 0.11a 0.05b

2019 Percentage seed set 0.38a 0.38a 0.39a

2018 Plant height 87.97b 93.37a 81.36c

2019 Plant height 136.28a 139.33a 136.81a

2018 Seed area 8.38b 9.16a 8.31b

2019 Seed area 7.59c 8.83a 8.03b

2018 Seed density 1.28c 1.43a 1.36b

2019 Seed density 1.41c 1.65a 1.52b

2018 Seed length 6.3b 6.83a 6.24b

2019 Seed length 6.29c 7.05a 6.49b

2018 Seed mass 8.11b 9.79a 8.54b
2019 Seed mass 8.91c 11.57a 9.89b
2018 Seed width 1.72b 1.76a 1.71b

2019 Seed width 1.57b 1.65a 1.59b

2018 Seeds per spike 19.76a 18.01a 9.86b

2019 Seeds per spike 53.26a 56.39a 56.11a

2018 Shattering 2.16a 0.77c 1.50b
2019 Shattering 3.39a 1.32c 3.13b
2018 Spike emergence 0.77a 0.65b 0.5c

2018 Spike emergence 23.52a 20.05b 14.69c

2018 Spike length 32.06b 36.51a 31.89b

2018 Spike yield 0.17a 0.14a 0.09b
2019 Spike yield 0.46b 0.54a 0.54a
2018 Spikelets per inflorescence 21.78b 23.59a 20.93c

2019 Spikelets per inflorescence 22.07c 24.68a 23.26b

2018 Stem angle 44.45c 64.87a 51.32b

2018 Stem strength 1616.84b 1787.38a 1473.07c

2019 Stem strength 879.63a 896.25a 928.69a

et al., 2020a; b; Zhang et al., 2016). Here we have exam-

ined the results of multiple cycles of GS implemented in an

IWG breeding program. Overall, we found that correlations

between predicted values and future observed values were

generally quite high, with the main exception being spike

yield. The low prediction value for spike yield could be due

to the amount of environmental variance and genotype-by-

environment that impact this trait from year to year. Crain et al.

(2020a) showed similar results that traits with less genotype-

by-environment interaction—free threshing and shattering—
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F I G U R E 3 Histograms of trait distribution for TLI-Cycle 7 genets in 2019. Each panel represents one trait with the validation population shown

with black histogram. The purple colored bars represent the parent distribution for the same trait. Vertical solid line is the mean of the validation

population, with purple dashed line representing the mean of the parents

had high predictive abilities, while spike yield had low predic-

tive ability. The GS models used to predict spike yield were

built on data from 2016–2018, which were often dry years, but

2019 was an exceptionally wet year, potentially leading high

genotype-by-environment interaction and severely reducing

the prediction accuracy. Even though the GS predictions were

low for spike yield, we observed a larger realized selection dif-

ferential. This likely is due to more selection pressure being

applied relative to other traits such as seed mass. As more

years of data are collected, we anticipate that the models will

improve as data from normal and extreme years are aggre-

gated and the program will be better able to predict long-term

average performance rather than performance in a small num-

ber of specific environments.

Using the structure of the TLI-Cycle 7 validation popu-

lation and parents, we observed that traits are responding

to selection. Expected yearly (cycle) genetic gains in prior-

ity traits were 14% increase in free threshing, 14% decrease

in shattering, 6% increase in seed mass, and 8% increase

in spike yield. One caveat is that these values were esti-

mated from the validation population, which is not a truly

random set of TLI-Cycle 7 genets. Because the validation
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F I G U R E 4 Gantt chart of intermediate wheatgrass breeding program. (a) Panel diagrams activities occurring within the 1-yr breeding cycle

beginning in early October each year. Breeding population refers to the ∼100 selected parents that are intermated in the greenhouse to form seed for

the following cycle. The validation population are field-grown plants with phenotypic evaluation that are used to train genomic selection (GS) models.

Activities are labeled within their respective timeframe. (b) Panel diagrams the specific steps during the GS with each activity in the program listed

on the y axis with approximate dates of each activity and length of activity in the x axis and designated by approximant number of days inside the box.

This basic outline has been followed each year for the previous three intermediate wheatgrass breeding cycles at The Land Institute, Salina, KS

population was comprised of individuals with above-average

similarity to the selected plants, these estimated gains are

conservative.

Evaluating numerous traits allows a better understanding of

the component traits for selection target of grain yield. While

spike yield is predicted to increase, we also noted that percent-

age seed set actually decreased in TLI-Cycle 7 parent popula-

tions (Table 3). This also corresponded to an increase in the

number of spikelets per inflorescence, florets per spike, and

spikelets per spike. These data suggest that increased spike

yield has resulted from increased total floret numbers rather

than increased floret site utilization, which was the breeding

target and desired outcome. Previous research in perennial

ryegrass (Lolium perenne L.) has shown that increased seed

yield can be attributed to a higher percentage seed set (Mar-

shall & Wilkins, 2003). An increase in percentage seed set

would be desirable so as not to develop varieties with larger

heads, longer development times, and greater lodging ten-

dency. Our results indicate that the easiest path to increased

seed yield may be through undesirably large heads, so other

approaches may be required to develop varieties with consis-

tently higher seed set in diverse environments and supraopti-

mal temperatures.

Previously, TLI has completed a cycle of phenotypic selec-

tion in 2 yr, with the goal of achieving 10% or more gain per

cycle. With the distinct advantage of GS enabling reduced

breeding cycle time, the gains from TLI-Cycle 7 projected

over 2 yr (e.g. two cycles of GS) would be a 30% increase

in free threshing, 30% decrease in shattering, 12% increase

in seed mass, and 17% increase in spike yield, allowing GS to

potentially perform significantly better than phenotypic selec-

tion. Crain et al. (2021) estimated that genetic gains per year

using GS could be 3.8, 5.3, 6.6, and 2.6-fold improvement for

free threshing, shattering, seed mass, and spike yield over phe-

notypic selection. Our observed results were lower with only

a threefold improvement expected in free threshing and shat-

tering, 1.2-fold increase in seed mass, and 1.7-fold increase in

spike yield. These genetic improvement estimates were made
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F I G U R E 5 Diagram of The Land Institute (Salina, KS) intermediate wheatgrass genomic selection breeding program showing the duration of

field evaluation for the training populations. Cycles are listed on the y axis with years of phenotypic collection on the x axis. Dark shading is completed

and anticipated data collection is in light

using one cycle (location) of plants with cross-fold validation

strategy, so these estimates represent an upper boundary on

what is achievable per cycle without the confounding effects

of genotype-by-environment across years and locations (Crain

et al., 2020b). Additionally, these estimates assume selec-

tion on a single trait, while TLI currently selects for broad

improvement of priority traits. While realized gains could be

influenced by a variety of factors, such as the selection inten-

sity placed on specific traits, measurement error and preci-

sion, and environmental variance, the current results appear

to support strong genetic improvement through application of

GS.

4.3 Future directions

Currently, GS appears very effective within the IWG breeding

program. Using GS, TLI has completed one cycle of selection

per year compared with a minimum of 2 yr per cycle with

phenotypic selection. The current implementation of GS is

very flexible, as data are still being collected on TLI-Cycle 7

(Figure 5). By completing a selection cycle each year, but

observing plants for up to three or more years, the breed-

ing program is constantly making new genetic combinations,

while also building a training population that truly reflects

performance of IWG throughout a multi-year lifespan. As a

third or subsequent years of phenotypic observations are com-

pleted, models for long-term traits, such as sustained yield,

can be developed and used. The result will be a training pop-

ulation that may be two or more cycles behind the generation

of selection. Further flexibility is provided by having multiple

cycles of training populations, and if an outstanding genet is

identified that was not in the crossing block, it can be added

in future cycles.

In this study, each cycle–year trait combination was mod-

eled and predicted independently (e.g. free threshing Year

1 and free threshing Year 2 were not predicted together).

Current work is focused on incorporating all data into one

model, regardless of year of data observation, accounting for

the longitudinal and multi-year unbalanced nature of the pro-

gram. Ideally, this will result in selecting stable genotypes that

have consistent performance across multiple years. Another

unknown that could be answered is if the rate of genetic gain

can be maintained across many cycles of selection.

Although the data presented support continued use of

GS, we do not have a completely randomized experiment

to measure realized genetic gain per cycle. As more cycles

of selection are completed, we also anticipate conducting a

truly randomized generational experiment with appropriate

replications to evaluate genetic gain between cycles. This will

allow all cycles to be compared in the same environment and

at the same growth stages, which cannot currently be com-

pleted within the normal flow of the the breeding program.

5 CONCLUSIONS

Development of new perennial crops for sustainable agricul-

ture is a visionary yet daunting task (Crews et al., 2018; Glover

et al., 2010). New technologies and genomic tools can be used

to speed the process. The rapid cycling enabled by GS, 1 yr per

cycle vs. two or more years, will accelerate progress in devel-

oping IWG as a perennial grain crop. Our results show that

GS is effective at improving traits in IWG and, for some traits,

like free threshing, can more than double progress from phe-

notypic selection. As key domestication traits—free thresh-

ing, shattering, and seed mass—are improved, more efforts

can be devoted to selection efforts for spike yield and other
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agronomic traits. This should result in higher genetic improve-

ment as selection on many traits slows progress relative to

selecting on one or a few traits (DeHaan et al., 2018). Addi-

tionally, the use of validation populations over many years

allows for selection on perennial traits without lengthening

the breeding cycle and reducing genetic gain per year. Sus-

tained breeding efforts should be able to develop perennial

crops that can produce food and fiber while simultaneously

providing beneficial ecosystem services.
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