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Abstract: Aspergillus oryzae has been used to ferment various cereal grains throughout
history, as seen in the examples of sake, soy sauce, and miso. It is known that this fermen-
tation enhances the nutritional quality of the raw materials by breaking down complex
molecules into simpler, more digestible forms and increasing the bioactive compounds. In
this study, intermediate wheatgrass (IWG) was fermented with three different strains of
A. oryzae suitable for making sake, soy sauce, and miso. Whole IWG flour was mixed with
water (1:2 w/w), autoclaved at 121 ◦C for 20 min, cooled, mixed with A. oryzae spores, and
fermented for seven days at 30 ◦C. Sugars, protein, amino acids, kojic acid, total phenolic
content, total flavonoid content, and DPPH radical scavenging activity were measured.
The protein content increased significantly (p < 0.05) from 18.0 g/100 g to over 30 g/100 g
after seven days. Lysine showed a positive correlation with protein content across all three
strains, with its ratio increasing as the protein content increased, while all other essential
amino acids displayed a negative correlation and a decreasing ratio with the protein con-
tent. Autoclaving increased the verbascose content of IWG, and further increases were
observed during the first two days of fermentation across all three strains, followed by a
subsequent decline. Peak glucose content was observed on days 3~4 but also decreased
in the subsequent days. Total phenolic content, total flavonoid content, kojic acid, and
DPPH scavenging activity peaked around day 4~5 for all three strains, followed by a slight
decrease in the subsequent days. The findings of this study highlight the potential of
solid-state fermentation to improve the nutritional profile of IWG, emphasizing that the
selection of A. oryzae strains and the fermentation duration can affect the fermentation
outcome and nutritional enhancements.

Keywords: Aspergillus oryzae; fermentation; intermediate wheatgrass

1. Introduction
Intermediate wheatgrass (Thinopyrum intermedium, IWG) is a perennial cereal grain

introduced to the U.S. in the 1930s from Eurasia and was used as forage crops until
its domestication in the 1980s [1]. IWG is known for its environmental benefits, such
as carbon sequestration and prevention of nitrate leaching, compared to wheat [2]. In
addition to the environmental benefits, research by Tyl and Ismail (2019) has shown the
superior nutritional benefits, such as higher dietary fiber, protein, and antioxidants, in IWG
compared to wheat [3]. However, as IWG is still a relatively new cereal grain in the market
with its first food-grade variety, “MN-Clearwater”, released in 2019 [1], its application in
the food industry is still under development. In this vein, studies on the functionality of
IWG and the effects of processing methods on its functionality have been gaining interest
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in recent years. Ty et al. (2019) developed tempering conditions for producing refined IWG
flour, applicable to wheat-based products like pasta and bread [4]. Research by Cetiner
et al. (2023) has shown the controlled addition of IWG flour to improve baking properties
such as bread volume and softness [5]. Additionally, Boakye et al. (2022) investigated
the extrusion conditions for expanded IWG products [6], while Marcus and Fox (2022)
examined the prospects of malting IWG and producing wort [7]. However, no research has
been conducted on the effects of fermentation on the nutritional properties of IWG.

Solid-state fermentation (SSF) of cereal grains with fungi has been a common practice
throughout human history, as seen in examples such as sake, miso, and soy sauce [8].
Taking the example of koji, fermented for sake production, solid-state fermentation takes
place by inoculating steamed rice with koji spores (A. oryzae spores) and fermenting it at
around 30 ◦C and between 50 and 80% relative humidity [9]. SSF by various Aspergillus
strains has been found to produce various hydrolytic enzymes through the fermentation
process, improving the bioavailability of nutrients in the cereal grains [10,11]. Research by
Zwinkles et al. (2023) has shown that SSF alters the amino acid profile and increases the
PDCAAS values of rice and barley [11]. Such ability of A. oryzae to improve the protein
quality of cereal grains has a potential application in improving animal feed as well [12]. In
other applications, the release of sugar from starch content with amylase-type enzymes can
be applied to produce a sweet dessert drink, known as amazake, or used as an ingredient
in the production of sake [13,14].

The application of SSF goes beyond food processing and into the production of various
chemical substances, including bioactive compounds for pharmaceuticals, organic acids
for cosmetics, and enzymes for industrial applications [15–17]. Given the versatility of SSF
and the established benefits of IWG, investigating the effects of SSF on IWG could unlock
new opportunities to enhance its nutritional profile and develop innovative food products
with ecological advantages over conventional grain-based alternatives. In this study, we
ferment IWG with three different strains of A. oryzae over 7 days and compare the changes
in the nutritional profile to understand the impact of SSF on IWG.

2. Materials and Methods
2.1. Materials

A. oryzae NJK401 (sake koji), A. oryzae NJK701 (soy sauce koji), and A. oryzae NJK806
(miso koji) were generously provided from Nihon Jouzou Kougyou (Tokyo, Japan). Whole
intermediate wheatgrass was obtained from Perrenial Pantry (Burnsville, MN, USA).

2.2. Fermentation and Extraction

Whole intermediate wheatgrass was milled to less than 0.5 mm in particle size and
mixed with water at a ratio of 1:2 (w/w). The mixture was then autoclaved at 121 ◦C for
20 min and cooled to below 30 ◦C. The sample mixtures were inoculated with A. oryzae
spores (1% w/w) and fermented at 30 ◦C at a humidity of 65% under a draft for 7 days.
The fermentation temperature and humidity were based on the standard practices of the
koji-making process in sake production [9]. Previous research indicates that the optimal
temperature for amylase-type enzyme production during koji fermentation ranges from
35 ◦C to 40 ◦C, whereas protease-type enzymes are more abundantly produced at 30 ◦C [18].
For this experiment, a temperature of 30 ◦C was selected to account for the higher protein
content of IWG compared to rice for a more efficient fermentation [3,19]. The samples for
analysis were collected from four different sections of the mixture every 24 h, sterilized in
an autoclave at 121 ◦C for 20 min, freeze-dried, and stored at −20 ◦C until further analyses.
The fermented IWG samples were dispersed in 95% ethanol (1:10, w/v) and incubated at
25 ◦C for 24 h. The solution was then centrifuged at 16,060× g on a Heraeus Biofuge Pico
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and filtered through a 0.45 µm membrane filter. This extraction process was repeated twice,
and the supernatants obtained were combined. The extract was dried under nitrogen gas
and dissolved in 2 mL of 50% ethanol for further analyses.

2.3. Sugar Content Analysis

The sugar content was analyzed following the methods described by Murai et al.
(2024) using a Dionex 5000+ high-performance anion exchange chromatographic system
coupled with pulsed-amperometric detection (HPAEC-PAD) (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) [20]. The samples were eluted isocratically with a 90 mM NaOH
solution through the CarboPac PA10 anion-exchange resin column (250 × 4 mm) and its
corresponding guard column (50 × 4 mm). The analyzed sugars in this study include
sucrose, glucose, fructose, raffinose, stachyose, and verbascose. The sugar standards for
the standard curves were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.4. Total Starch Content Analysis

The total starch content of the samples was determined by first removing the glucose
and maltodextrins with alcohol washing based on the method described in the assay
protocol for total starch analysis by Megazyme (K-TSTA-100A) [21]. The freeze-dried
samples were milled and passed through a 0.5 mm screen. Approximately 5 mL of aqueous
ethanol (80% v/v) was added to 100 mg of the sample and incubated between 80 and
85 ◦C for 5 min. The sample was vortexed, and an additional 5 mL of ethanol solution
was added. The samples were then centrifuged at 3000× g for 10 min at 5 ◦C, and the
supernatant was discarded. The remaining pellet was redissolved in 10 mL of additional
ethanol solution and centrifuged under the same conditions, and the supernatant was
discarded. The remaining procedure followed the method described by AOAC official
method 996.11 [22].

2.5. Protein Content Analysis

The protein content was measured by the Dumas method [23], with a nitrogen conver-
sion factor of 5.70.

2.6. Amino Acid Analysis

The total amino acid contents were determined following the protocols in Section
8.2 of the Product Manual for AAA-Direct, Dionex Amino Acid Analyzer (Thermo Fisher
Scientific Inc., Waltham, MA, USA), with slight modifications [24]. Approximately 2–6 mg
of the flour samples was hydrolyzed for 16 h at 110 ◦C under vacuum. The samples were
then neutralized with 6 M NaOH. The column used for the separation of the amino acids
was the AminoPac™ PA10 column (2 × 250 mm), along with its corresponding guard
column (2 × 50 mm). The eluents, eluent gradient program, and conditions followed the
specifications in Application note 163, titled “Determination of Protein Concentrations Us-
ing AAA-Direct™” (Thermo Fisher Scientific Inc., Waltham, MA, USA). External standard
curves were made using the AAS18 amino acid standard mix (Millipore Sigma, Burlington,
MA, USA). The result from this method includes lysine, arginine, threonine, alanine, valine,
glycine, proline, serine, isoleucine, leucine, histidine, methionine, phenylalanine, aspartate,
glutamate, tyrosine, and cysteine.

2.7. Total Phenolic Content Analysis

The total phenolic content (TPC) was determined following the method of Ritthibut
et al. (2021), with some modifications [25]. The IWG extracts (100 µL) were mixed with 10%
(v/v) of Folin–Ciocalteu reagent (200 µL) and 700 mM of Na2CO3 (800 µL). The mixture
was then incubated at 25 ◦C for 2 h, and the absorbance was measured at 765 nm using a
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spectrophotometer. The TPC was calculated based on the standard curve with gallic acid
(Sigma-Aldrich, St. Louis, MO, USA) and expressed as milligrams of gallic acid equivalent
per gram of flour.

2.8. DPPH Radical Scavenging Activity Analysis

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was determined
following the method of Ritthibut et al. (2021), with some modifications [25]. A total of
500 µL of the sample extract was mixed with 450 µL of 100 mM Tris-HCl buffer (pH 7.4)
and 1 mL of 0.1 mM DPPH/methanol solution. The mixture was left at 25 ◦C for 30 min
in the dark, and the absorbance was measured at 517 nm. The percentage of the DPPH•
scavenging activity was calculated using the following equation:

% activity =
Absorbance (blank)− Absorbance (sample)

Absorbance (blank)
× 100 (1)

2.9. Total Flavonoid Content Analysis

The total flavonoid content (TFC) was determined following the method of Do et al.
(2014), with some modifications [26]. A total of 0.6 mL of the extract was incubated with
0.6 mL of aluminum chloride at 25 ◦C for 30 min, and the absorbance was measured at
415 nm. A standard curve was built with quercetin, and the TFC is reported as milligrams
of quercetin acid equivalent per gram of IWG flour on a dry basis (mg/g flour).

2.10. Kojic Acid Content Analysis

The kojic acid content was determined following the methods by Terabayashi et al.
(2010) [27]. The extracts were mixed with freshly prepared FeCl3 solution (1%), and
the absorbance was measured at 500 nm. The kojic acid content was calculated using a
standard curve built with kojic acid (Sigma-Aldrich, St. Louis, MO, USA) concentration
and absorbance.

2.11. Statistical Analysis

The sample preparation and analysis were conducted in duplicates for a total of a
quadruplicate measurement for each data point. The measurements are reported on a
dry basis. ANOVA, data visualization, and Pearson’s correlation analysis were performed
using Python 3.10.12 (Python Software Foundation, Wilmington, DE, USA).

3. Results and Discussion
3.1. Sugar Content

The most abundant sugar in the raw intermediate wheatgrass flour was glucose
(0.82 g/100 g), followed by sucrose (0.65 g/100 g) (Figure 1). While Johnsrude and others
(2023) [28] reported the glucose and sucrose contents of hydrolyzed feedstock-grade inter-
mediate wheatgrass, to the best of our knowledge, the glucose and fructose contents of
food-grade intermediate wheatgrass have not yet been documented. Amounts of oligosac-
charides, including raffinose (0.09 g/100 g), stachyose (0.10 g/100 g), and verbascose
(0.15 g/100 g), in raw intermediate wheatgrass have also never been reported to the best of
our knowledge as well.
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The heat treatment increased the contents of all types of sugars, where verbascose
became the most abundant sugar (4.91 g/100 g), followed by sucrose (4.42 g/100 g) and
glucose (3.87 g/100 g) (Figure 1). The significant increase in glucose, verbascose, and
fructose following the steam treatment could be attributed to the breakdown of plant
structures, such as glycoproteins. Sugars bound in glycoprotein form would not be de-
tected by the HPAEC-PAD methodology employed in this study. Lectins, a subgroup of
glycoproteins, are ubiquitously found in plants, where they serve to protect against external
pathogens [29]. Research by Peumans and Van Damme (1998) highlighted that cereal grains,
including wheat, rye, barley, and rice, contain lectin concentrations up to 0.5/100 g [30],
suggesting that intermediate wheatgrass in its raw form is also likely to contain lectins.
Additionally, research by Mattucci et al. (2004) [31] has shown that the activity of wheat
germ agglutinin (WGA), a type of lectin found in wheat, decreases when heated beyond
65 ◦C. This behavior might help explain the increased detection of glucose, verbascose,
and fructose, given that lectins have affinities for specific sugars, including glucose and
galactose, which are present at the terminal ends of these compounds [32,33].

The fermentation caused a general increase in sugar content for the first three days,
followed by a decrease over the subsequent days (Figure 1). Notably, the verbascose con-
tent reached 19.83 g/100 g on the first day of fermentation with the sake strain (Figure 1).
Verbascose is typically found in high concentrations in peas and mung beans but not in
wheat [34]. The increase in glucose could mainly be attributed to amylase enzymes pro-
duced by A. oryzae, which has been widely studied in the past [35]. The increase in sucrose
and verbascose could suggest the presence of glycosyltransferases, which are enzymes
that catalyze the biosynthesis of oligosaccharides [36]. Research by Perna et al. (2018) has
shown the capability of A. oryzae to produce fructosyltransferase, which may explain the
increase in sucrose content [37]. A. oryzae is also known to produce α-galactosidase [38].
While α-galactosidase is primarily known for its hydrolytic capabilities, it has also shown
transglycosylation activity in certain cases [39]. β-Galactosidase has also been found to
catalyze transglycosylation under certain conditions [40]. The fermentation process could
have also contributed to a reduction in lectin levels, as demonstrated by the decrease in
wheat germ agglutinin (WGA) activity during sourdough fermentation, highlighted in
the study by Tover and Ganzel (2021) [41]. The breakdown of lectins during fermentation



Foods 2025, 14, 395 6 of 17

could have had a similar effect as the steam treatment, increasing the detectable amounts
of sugars. The decrease in verbascose and sucrose concentrations could be attributed to
the α-galactosidase and β-fructofuranosidase, as certain A. oryzae strains have been found
to produce β-fructofuranosidase, which are responsible for the breakdown of sucrose
molecules [42].

Strains of A. oryzae are utilized differently in industrial applications based on their
enzymatic activity. Strains with higher amylase activity are typically used for sake and
miso production, while strains with higher protease activity are preferred for soy sauce
production [43]. This distinction aligns with the focus of each product. In sake production,
the goal is to break down starch into fermentable sugars to support alcohol fermentation,
whereas in miso, sweetness plays a significant role in the overall flavor. Conversely, soy
sauce production focuses on developing umami, achieved through the breakdown of
proteins into amino acids by proteases. Ito and Do (1994) describe the appearance of these
strains, noting that strains with strong amylase activity typically form colonies that are
yellow-green to pale yellow, while those with strong protease activity are green to dark
green [43]. Figure 2 shows the appearance of fermented IWG with each strain on day 4 of
fermentation, which is consistent with these descriptions. The NJK401 strain (sake koji) and
NJK806 strain (miso koji) both displayed a pale yellow color, whereas the NJK701 strain
(soy sauce koji) exhibited a green color. However, the changes in the sugar content during
fermentation did not always align with expected amylase activity levels. In some cases, the
NJK701 strain produced higher sugar levels than the other strains at certain points in the
fermentation period.
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3.2. Total Starch Analysis

The starch content of the whole intermediate wheatgrass flour was 42.7 g/100 g of
flour. This falls in the range (46.7–51.2 g/100 g) of starch content, as reported in past
studies [44]. Heat treatment reduced the starch content (Figure 3), which corresponds to an
increase in glucose content (Figure 1), consistent with previous studies showing that the
thermal hydrolysis of starch leads to sugar production [45]. Fermentation continued to a
decrease in the starch content, where the starch content ranged from 4.3 to 8.9 g/100 g by
the seventh day of fermentation. As discussed in Section 3.1, the decrease in starch content
during the fermentation could be attributed to the hydrolytic amylase enzymes produced
by the A. oryzae strains, as widely studied in the past [37].
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3.3. Protein Content

The protein content of the whole intermediate wheatgrass flour was 18.0 g/100 g
of flour (Figure 4). This is on the lower end of the reported range of protein contents
of intermediate wheatgrass from past research (17.6~23.5 g/100 g) [6,44]. Fermentation
significantly (p < 0.05) increased the protein content for all three strains, with the largest
increase occurring between day 3 and 4. On day 4, there was a 50.89%, 34.88%, and 39.39%
increase in protein content from day 3 for the sake, miso, and soy strains, respectively. The
highest protein content was observed on day 5 (34.16 g/100 g) for the soy strain, while the
highest protein content for the sake (31.21 g/100 g) and miso (32.08 g/100 g) strains was
observed on day 6. A decrease in protein content was observed after the peak for all three
strains. The soy strain consistently had a higher protein content than the sake and miso
strains throughout the fermentation (Figure 4).
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Increases in protein content for substrates fermented by A. oryzae have been reported
in the past. For example, research by Hong et al. (2004) has shown a 10% increase
in protein content in soybeans and soybean meals fermented with A. oryzae in a bed-
packed solid fermenter [12]. Additionally, research by Rousta et al. (2021) has shown an
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increase in protein content in oat flour from 11% to 37% in a submerged fermentation
with A. oryzae [46]. Such an increase in protein content can be attributed to a decrease
in carbohydrate content of the fermented substrate rather than an increase in nitrogen
content. As seen in Figure 1, the sugar content of the fermented substrates reaches its
peak around day 2 or 3 and, depending on the strain, starts to decrease in the subsequent
days. In contrast, the protein content increases during the same period the sugar content
starts to decrease (Figures 1 and 4). A. oryzae, just like many other microorganisms, utilizes
glucose as its main carbon and energy source. A. oryzae continuously produces carbon
dioxide gas throughout the fermentation process as the protease activity increases [47]. This
suggests a decrease in carbon concentration of the fermented material, inversely increasing
the nitrogen content and leading to an increase in the crude protein content, measured by
the Dumas method through the concentration effect. A similar decrease in carbohydrate
content, accompanied by an increased protein content in the fermentation substrate, has
been observed in past studies [48].

3.4. Amino Acid Composition

The change in amino acid compositions of the samples through the heat treatment
and fermentation are presented in Figure 5. The most abundant essential amino acids
in the raw IWG samples were leucine, isoleucine, threonine, valine, and lysine. The
lowest essential amino acids were histidine, phenylalanine, and methionine. While lysine
accounted for 4.56% of the total amino acids in the raw IWG samples, its proportion
increased progressively during fermentation. The lysine percentage reached 12.3%, 16.7%,
and 27.0% in the sake, soy, and miso strains, respectively, by the seventh day of fermentation.
Lysine and histidine were the only essential amino acids that had a positive correlation
with the increase in protein content (Figure 6). All the other essential amino acids had a
negative correlation with the increase in protein content. A similar rise in lysine content
has been reported in previous studies, where the fermentation of oat flour with A. oryzae
increased the lysine percentage from 4.35% to 7.44% of the total amino acids, excluding
tryptophan [46]. The increase in lysine concentration in fermented IWG can be highly
beneficial, as the current supply of plant-based lysine predominantly comes from soybean
production [49]. Fermented IWG offers a promising alternative source of lysine, potentially
reducing dependence on traditional crops and contributing to a more sustainable and
diversified global supply of plant-based lysine.

Lysine production is a well-documented aspect of fungal metabolism, facilitated by
M1 aminopeptidases encoded by the apsA and apsB genes, which liberate N-terminal
lysine from peptides. However, in this study, the observed increase in lysine during fer-
mentation cannot be fully attributed to these enzymes, as HCl hydrolysis of the flour
should have liberated lysine in the unfermented samples as well. One reason for the
increased proportion of lysine could be the de novo synthesis of this amino acid through
the fungal α-aminoadipate pathway [50]. The pathway begins with the condensation of
acetyl-CoA and 2-oxoglutarate, forming homocitrate. This intermediate then dehydrates to
homoaconitate, which is then rehydrated to produce homoisocitrate. The oxidative decar-
boxylation of homoisocitrate generates α-ketoadipate, which is subsequently converted
to α-aminoadipate through an amino transfer from glutamate. The final steps in lysine
synthesis involve the sequential formation of α-aminoadipate semialdehyde, saccharopine,
and, ultimately, lysine. Another reason for the change in the amino acid profile may be
the ability of A. oryzae to assimilate ammonium through specific ammonium transporters,
where ammonium plays a role in nitrogen metabolism and supports growth and develop-
ment in filamentous fungi. Genomic analyses conducted by Chutrakul et al. (2024) have
identified four ammonium transporter genes (aoamt1-aoamt4) in A. oryzae, with aoamt2 and
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aoamt3 showing ammonium-dependent expression, especially under ammonium-limited
conditions [51]. The same study revealed that aoamt3 is essential for ammonium up-
take, nitrogen assimilation, and filamentous growth. Overexpression of aoamt3 enhanced
growth performance, increased biomass yield, and reduced glucose consumption. These
findings suggest that A. oryzae can incorporate non-protein nitrogen, such as ammonium,
into its metabolic pathways, potentially influencing the amino acid composition of the
fermented products.
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3.5. Total Phenolic Content

The total phenolic content of the raw IWG (11.7 mg/g) decreased following heat
treatment (10.4 mg/g) (Figure 7). Combined observations from this study and past research
suggest that changes in the phenolic content following a heat treatment are dependent
on the conditions and substrates. For example, a study by Ghani et al. (2023) has shown
that autoclaving and pasteurization of fermented broken rice do not affect TPC, while
oven drying does [52]. However, a study by Musilova et al. (2020) has shown that TPC
generally increases in sweet potatoes by boiling, steaming, microwaving, and baking [53].
The observed decrease in autoclaved IWG would be limited to the conditions employed in
this study.
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Fermentation increased the TPC for all three strains of A. oryzae (Figure 6). The highest
TPC for the sake strain (37.7 mg/g) was observed on day 7, on day 4 for the miso strain
(44.9 mg/g), and on day 5 for the soy strain (44.7 mg/g). The TPC continued to increase for
days 1–3 for all strains but fluctuated in value for the subsequent days. This observation is
consistent with past research by Punia et al. (2020), where the TPC of rice bran fermented
with Aspergillus strains increased in the first 4 days but decreased in the subsequent
3 days [10]. As Punia et al. (2020) suggest [10], this could be due to the initial hydrolytic
reactions by the enzymes produced during the SSF, releasing the bound phenolics and the
degradation of gallic acid to aliphatic compounds in the later phase [54–56].

3.6. Total Flavonoid Content

A low flavonoid content was observed in both raw (0.01 mg/g) and heated IWG
(0.01 mg/g) (Figure 8). The fermentation increased the TFC, where the sake strain
(0.74 mg/g) had the highest value on day 6, the miso strain (0.33 mg/g) on day 4, and the
soy strain (0.36 mg/g) on day 7 (Figure 8). As seen in the TPC, TFC also fluctuated in the
later days of the fermentation. Past studies have reported mixed results on the changes in
TFC during fermentation by Aspergillus strains. A study by Raffiquzzaman et al. (2015)
on Japanese kelp fermented with A. oryzae has shown a decrease in flavonoid content over
7 days of fermentation [57]. However, a study by Cai et al. (2011) has shown an increase in
TFC for oats fermented with Aspergillus strains for 3 days [58]. An increased flavonoid
content in the fermented IWG could enhance its functional properties, offering potential
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health benefits, such as antioxidant, anti-inflammatory, and neuroprotective effects, making
it a valuable ingredient for both food and nutraceutical applications [59].
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Flavonoids are secondary metabolites found ubiquitously in plants, as they regulate
cell growth and response to biotic and abiotic stresses [60]. As with the increase in TPC, the
increase in TFC could be due to the release of bound flavonoid compounds, increasing their
detectable amount [55]. Free phenolic compounds, including free flavonoids, are found in
the vacuoles of plant cells, whereas bound flavonoids are attached to the cell wall structures.
As Huynh et al. (2014) discuss, increased flavonoid content could be due to the enzymes
produced by the A. oryzae strains, such as cellulase, glucosidase, and pectinase [55].

3.7. DPPH Radical Scavenging Activity

The DPPH radical scavenging activity in the heat-treated samples (1%) decreased from
the raw samples (6%), while the fermentation process increased the scavenging activities
for all three strains of A. oryzae (Figure 9). The decrease in the scavenging activity following
the steam treatment is contrary to some research, where the scavenging activity has been
found to increase in several cases [61,62]. The decrease in the scavenging activity may be
due to the decreased TPC following the heat treatment. Past research has shown TPC and
the DPPH radical scavenging activity to be positively related [25,63], which is similar to
what is observed in this study (r = 0.92) (Figure 10).

The highest activity for the sake strain (64%) was observed on the fifth day, on the
fourth day for the miso strain (65%), and on the sixth day for the soy strain (53%). This
result is similar to research conducted by Rhittibut et al. (2021), where fermentation with
Aspergillus strains increased the scavenging activity of rice bran above 60% [25]. The
DPPH radical scavenging activity stabilized from day 4 and beyond, similarly to the TPC
(Figure 7). An increased DPPH radical scavenging activity may enhance the quality of
IWG by preventing fat rancidity caused by oxidation, thereby improving its shelf life and
stability [64]. Additionally, high antioxidant activity can protect against oxidative stress
in organisms, reducing the risk of degenerative diseases, such as cardiovascular disease,
Alzheimer’s, and cancer, further positioning fermented IWG as a functional food with
broad applications [65].
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3.8. Kojic Acid Content

While the raw IWG (0.03 mg/g) and heat-treated IWG (0.05 mg/g) contained little
kojic acid, all three strains of A. oryzae significantly increased the kojic acid content during
the fermentation process (Figure 11). The sake (0.98 mg/g) and soy strain (0.48 mg/g)
achieved the highest kojic acid content on day 6, and the miso strain achieved the highest
kojic acid content on day 4 (0.36 mg/g). Kojic acid was found to be positively correlated
(r = 0.89) with the total flavonoid content (Figure 10). While kojic acid is not a flavonoid,
this result may suggest an interconnected fungal biosynthetic mechanism of kojic acid and
flavonoid production. The increase in kojic acid is expected, since it is a product of fungal
secondary metabolism produced mainly by Aspergillus species in the current industry [17].
Kojic acid is known to have multiple applications, including, but not limited to, as a
whitening agent and in antibacterial and antioxidant products [66–68]. As summarized by
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Felipe et al. (2023), the fermentation temperature for kojic acid production typically ranges
between 25 and 30 ◦C, but other factors, such as carbon source, nitrogen source, pH, and
cultivation, can vary [17]. Typical carbon sources include glucose and sucrose, which may
explain some of the loss of glucose and sucrose and the increase in kojic acid content seen
within this study (Figure 1). These results highlight the potential of IWG as a substrate not
only for food and animal feed applications but also for high-value products, like kojic acid
for cosmetic and pharmaceutical uses. Further studies are needed to optimize kojic acid
production using IWG as a substrate, considering the effects of substrate composition and
fermentation conditions.
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4. Limitations
The results of this study are limited to the lot of intermediate wheatgrass obtained

from the Perennial Pantry at the time of the experiment, the strains of A. oryzae, and the
fermentation conditions employed in this study.

5. Conclusions
SSF with A. oryzae has historically been used to enhance the nutritional value of cereal

grains and is gaining increased attention for industrial applications. In this study, we
demonstrated the potential of applying SSF to IWG, a novel perennial crop with significant
ecological benefits. The fermentation increased the protein, lysine, total phenolic, total
flavonoid, and kojic acid content of IWG. The observed increase in total phenolic and
total flavonoid content, along with the production of kojic acid, highlights the potential of
fermented IWG as a functional food ingredient with antioxidant, anti-inflammatory, and
other health-promoting properties. Sugar content initially increased during the first two to
three days of fermentation, followed by a decline in later stages. Analysis using HPAEC-
PAD identified oligosaccharides such as raffinose, stachyose, and verbascose—compounds
typically associated with legumes—in the fermented IWG. Findings from this study align
with past research, showing that SSF concentrates protein content rather than increasing its
net amount, as carbohydrates are metabolized and lost during fermentation. The results
from this study, combined with past research on SSF with A. oryzae on other grains, suggest
that extending fermentation beyond four days may not further enhance TPC or the DPPH
radical scavenging activity. Future studies could explore the specific enzyme activities
of each strain and their interactions with IWG as a substrate. Moreover, research could
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investigate producing traditional fermented foods, such as sake, miso, and soy sauce, using
IWG, comparing their quality, flavor, and nutritional properties to products made from
conventional grains. These findings underscore the potential of SSF with A. oryzae as an
effective method to enhance the nutritional and functional properties of IWG, supporting
its broader application in sustainable food and feed systems.
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