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Introduction: Sainfoin (Onobrychis spp.) is a perennial legume traditionally

cultivated as a forage crop and is now emerging as a promising candidate for

development as a perennial grain legume. Despite its potential, no research has

addressed the breeding of sainfoin variet ies with superior grain

processing properties.

Methods: We conducted a multifactorial experiment to evaluate the depodding

and dehulling efficiency of five commercially available sainfoin varieties. Seeds

were processed using two different methods (belt thresher and impact dehuller)

across five sample sizes. A pre-trained Faster R-CNN (Region-based

Convolutional Neural Network) object detection model was fine-tuned to

identify intact pods, whole seeds, and split seeds from images of the processed

mixtures. These predictions were used to calculate processing efficiency (PE) for

each variety. A comprehensive power analysis was performed to determine the

minimum sample size of sainfoin pods required to detect differences in PE with

high statistical power.

Results: We observed strong varietal differences in PE, as well as clear effects of

the processing method. Belt threshing produced mixtures with more intact pods,

while the impact dehuller generated a higher proportion of split seeds. Increasing

sample size led to more intact pods across all varieties and methods, and notably

decreased seed proportion in belt-threshed samples. Statistical modeling

combined with object detection outputs revealed that a minimum of 2 g of

pods is required to reliably detect an absolute proportional difference of 0.25 in

PE between two breeding lines with 80% power.

Discussion: Our findings demonstrate that sainfoin varieties differ significantly in

processing efficiency and that processing outcomes depend strongly on both

method and sample size. Integrating deep learning–based phenotyping with

robust statistical design enables efficient evaluation of processing traits and

provides actionable guidelines for breeding programs. While deep learning

models offer powerful, cost-effective tools for plant phenotyping, their outputs

must be paired with rigorous statistical design to yield reliable and actionable

insights for crop improvement.
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Introduction

Sainfoin (Onobrychis viciifolia) is a perennial forage legume

which originated in the near east, and has been under continuous

cultivation as a forage crop across Europe and the Middle East for

over 1000 years (Poudel et al., 2023). When grown as a forage crop,

sainfoin has many benefits, some of which include anthelminthic

and bloat reduction properties in ruminants (Sottie et al., 2014;

Desrues et al., 2016), benefits to pollinators (Sheppard et al., 2019;

Fratianni et al., 2024), and the potential to reduce greenhouse gas

emissions (Sakhraoui et al., 2024). In addition, sainfoin has the

potential to become a perennial, temperate zoned pulse crop due to

its ease of cultivation and grain nutritional qualities comparable

with those of conventional, annual pulses (Craine et al., 2023;

Craine et al., 2024b). Recent studies have further highlighted

sainfoin ’s potential as a dual-use, perennial grain by

demonstrating its favorable amino acid profile and absence of

detectable mycotoxins, supporting its viability as a safe and

nutritious pulse crop (Craine et al., 2024c; Craine et al., 2024a).

Grains from most annual pulse crops must be depodded and

dehulled from the seed coat before they are used as a food product

or agricultural commodity due to the presence of bitter compounds

and high polyphenol content (Singh, 1995). Considering this,

developing lines with good processing and seed dehulling

properties are important goals for grain legume breeding

programs (Wang, 2008; Oomah et al., 2010). Dehulling can be a

labor-intensive process and varies widely between crops. Goyal,

Vishwakarma, and Wanjari (Goyal et al., 2008) found that a

tempering pigeon peas to 10.1% moisture and applying a

pretreatment of mustard oil greatly improved the dehulling

efficiency (DE, ease of removing the hull from whole seed to yield

split seeds). Other studies in pigeon peas and mung beans report

that combinations of steam treatment, drying, and tempering result

in high DE (Opoku et al., 2003). Sreerama, Sashikala, and Pratape

(Sreerama et al., 2009) pretreated gram species (Vigna mungo) with

protease and xylanase prior to dehulling, and found benefits in DE

when compared to oil-treated controls. Lentils are generally soaked,

dried, and then tempered back to a specific moisture content before

mechanical dehulling (Erskine et al., 1991a; Erskine et al., 1991b;

Wang, 2005).

However, to date no research papers have systematically

focused on specific methodologies related to depodding and

dehulling sainfoin, nor evaluated the DE of currently available

commercial cultivars. In part, this is because, as a novel perennial

grain legume, there is an open question as to whether the most

desirable end product is whole seed (WS, i.e. depodded whole seeds)

or split seed (SS, i.e. depodded and dehulled seeds). Tarasenko,

Butina, and Gerasimenko (Tarasenko et al., 2015) found that flour

made from WS had high protein and fiber content with lower fat

content, results that were later corroborated in nutritional studies of

WS by Craine et al (Craine et al., 2023). A comprehensive analysis

of heavy metals and toxins in WS revealed no analytes that pose any

threat to human consumption (Craine et al., 2024c). In addition,

animal feeding studies using both WS and SS found no difference

between in piglet weight gain and conversion ratios (Baldinger et al.,

2016), nor were there differences in protein digestibility between

sainfoin and other leguminous feedstuff (Kortelainen et al., 2014).

This suggests that either WS, SS, or both could potentially be target

end-products after processing.

To establish sainfoin as a viable grain crop, improving seed

processing traits such as free threshing (ease of seed separation from

pods) and dehulling efficiency (DE) is critical, as these

characteristics directly impact grain quality and food

functionality, as shown in other legumes (Ghavidel and Prakash,

2006; Oghbaei and Prakash, 2016). However, evaluating these traits

in sainfoin is challenging due to a lack of methodological

precedents. In most legumes, DE is influenced not only by genetic

and environmental factors (Wang, 2008), but also by the type of

processing machinery used, including abrasive (Reichert et al.,

1984) and centrifugal impact methods (Hlavangwani et al., 2025).

Without established benchmarks or standardized methods, defining

and improving these traits demands innovative approaches.

Image-based phenotyping offers a promising solution by using

computer vision and machine learning to generate high-resolution,

reproducible data across breeding lines. While traditional image

analysis methods like Fourier elliptical descriptors (Iwata et al.,

2010; Schlautman et al., 2020) and morphological operations

(Tanabata et al., 2012; Zhang et al., 2018) have been used for trait

extraction in other crops, they often suffer from sensitivity to

lighting, background conditions, and object alignment (Williams

et al., 2013), which limits scalability. In contrast, modern deep

learning–based pipelines offer greater robustness and throughput

for phenotyping novel grain crops like sainfoin. These tools have

already demonstrated utility in legumes for tasks such as species

identification (Koklu and Ozkan, 2020; Taheri-Garavand et al.,

2021; Rimi et al., 2022), seed detection (Ouf, 2023), and trait

extraction using semantic segmentation models (Morales et al.,

2024). Such pipelines can automate classification of seed

components—intact pods (IP), whole seeds (WS), and split seeds

(SS)—to estimate seed processing traits efficiently across genotypes

and processing conditions and can help uncover genetic and

environmental influences to support targeted breeding strategies.

Yet even with these advanced image-based methods, the

reliability and scientific value of phenotyping pipelines ultimately

depend on proper experimental design and statistical validation.

However, many researchers fail to address proper validation of

their image analysis techniques, as Lobet (2017) rightly points out.

Few perform proper power analyses before the experiment is

completed (Thomas, 1997), let alone after, leading to published

results across the sciences that are often misleading or outright

false (Ioannidis, 2005). Proper power analysis is essential to ensure

Abbreviations: IP, Intact Pods; WS, Whole Seeds; SS, Split Seeds; PE, Processing

Efficiency; PEWS, Split seed penalized PE; PESS, Whole seed penalized PE; DE,

Dehulling Efficiency; NOPGS, Number of seed Objects Per Gram fruit pod

Sample; NOPGM, Number of seed Objects Per Gram processed Mixture; RMSE,

Root Mean Square Error; MAE, Mean Absolute Error; mIOU, Mean Intersection

Over Union; MAP, Mean Average Precision; PCA, Principal Component

Analysis; TWGSS, Total Within Group Sum of Squares; GLM, Generalized

Linear Model.
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experiments are statistically robust. In low-yielding crops or where

breeding line seed availability is limited, power analysis guides

optimal sample sizes to detect meaningful trait differences between

two single lines. This prevents misinterpretation due to under-

powered tests and ensures confidence in phenotypic estimates for

breeding applications.

The goal of the present study was to 1) train a Faster R-CNN

model on processed mixtures to detect and classify IP, WS, and SS,

2) derive a new generalized metric, designated as processing

efficiency (PE), from the model predictions, 3) evaluate the effects

of processing method, variety, and sample size on seed counts and

PE within a factorial experimental design, 4) perform a power

analysis to determine the minimum sample size required to reliably

estimate PE for future breeding applications, and 5) demonstrate

that image-based phenotyping combined with statistical rigor can

support the development of sainfoin as a viable perennial

grain crop.

Methods and materials

Seed material

Sainfoin seed pods, i.e. sainfoin fruit, (an individual seed inside

a pod) of five different commercially available varieties were

acquired in bulk from seed growers and seed companies: ‘AAC

Mountainview’ (Preferred Alfalfa Genetics, Story City, IA), ‘Rocky

Mountain Remont’ (Montana Seeds, Inc.; Conrad, MT), ‘Delaney’,

‘Eski’, and ‘Shoshone’ (Alaska Ranch, Twin Bridges, MT). We

processed seed pods as received - no additional sorting or quality

control was performed on individual pod samples used in

this study.

Experimental design and processing

We designed a full factorial, completely randomized

experimental design with the factors ‘variety’, ‘sample-size’, and

‘processing-method’. Each combination of ‘variety’ x ‘sample-size’ x

‘processing-method’ was replicated ten times resulting in a total of

500 individual samples. Seed pods of each variety were randomly

sampled in quantities from one to five grams in one-gram

increments and weighed on an analytical balance to the nearest

0 . 0001g to r e co rd th e t ru e we i gh t o f t h e s amp l e

(‘legume_fruit_pod_mass_g’). These sample sizes were chosen to

reflect pod sample masses that could feasibly harvested from a

single plant breeding line. Samples were placed into coin envelopes,

assigned a random ID and a processing method, and stored in our

climate-controlled seed vault at 8-10°C and 40-50% relative

humidity until they were processed.

We evaluated two different processing methods. Seed pods were

processed either by a belt thresher (BT14 Single Plant Belt Thresher,

Almaco, IA) which removes seeds from the pod carpel while

minimizing damage to the seed, or by an impact type dehuller

(LT-15 Laboratory Thresher, Haldrup USA, Inc., IN) which uses

rubber impactors in a concave drum to remove seeds from the seed

pods. Pod samples processed by the belt thresher were passed

through a total of three times. We found that a single pass with

our small-scale belt thresher did not adequately remove seeds from

the pod carpels; repeated passes ensured more thorough depodding

of the samples. We note that this requirement may be specific to our

instrument, and processing needs may differ for larger threshers or

those produced by other manufacturers. Samples processed by the

impact dehuller were passed through one time and processed for a

total of 35 sec at speed 9. Once processed, the resultant mixture of

IP, WS, and SS was weighed again on an analytical scale, sans empty

pods and other dehulling debris, and was recorded as

‘processed_mixture_mass_g’. All 500 seed pod samples were

processed in this fashion.

Seed imaging

The processed mixture of seeds was scattered onto a blue

chroma, photography platform illuminated by two LED lighting

panels from the sides (See Figure 1). The mixtures were imaged

using a DSLR camera (Sony model ILCE-7RM2, Sony Electronics

Inc., New York) with a fixed focal length 55mm lens mounted on a

fixed rig directly above the platform. All images were acquired in

TIFF format at ISO 100 and a 1/40s exposure time with a final

resolution of 7968x5320. The images were converted to JPEG

format before annotation.

Image labeling

The images were uploaded to Labelbox, an online data

annotation platform (Labelbox Inc., San Francisco, CA, USA).

Bounding boxes were drawn around each seed derived object in

every image and classified into one of three categories: IP (intact

pods), WS (whole seeds), and SS (split seeds). IP were categorized as

intact or partially intact sainfoin seed pods (IP) which still

contained a single seed. WS were defined as seeds with an intact

seed coat which were completely separated from the seed pod

carpels. Finally, SS were defined as seeds without a seed coat that

were either intact (both halves of the seed together), split in half, or

fractured into small pieces. Small pieces of threshed seed pods,

empty seed coats, or other pieces of seed derived material which

could not be identified were left unlabeled.

We hand labeled a random selection of 20% of the images,

developed a preliminary faster-RCNN model as described below,

and then ran inference on the remaining 400 images to predict any

seed objects, discarding any objects with a confidence score less

than 0.8. We then uploaded the predictions to Labelbox using the

Labelbox Python SDK to use as model assisted labels. All bounding

boxes and object classifications underwent manual quality control.

Adjustments, reclassifications, or removals were performed as

necessary to correct inaccuracies in the preliminary model

outputs and to address any errors in class assignment. Finally, all

the annotations were exported into the popular COCO JSON
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format for use in the modeling scenarios. In total, 75,342 objects

covering three classes were annotated with bounding boxes in all

500 images. The counts were based on the total number of

annotated objects within each class. IP accounted for almost

48.6% of the total number of objects across all methods and

varieties, while WS and SS percentages were much lower at 33.8%

and 17.6%, respectively (Table 1).

Faster RCNN modeling

The Python package scikit-learn (Pedregosa et al., 2011) was

used to create training and validation image sets in an 80/20 split

that were stratified equally over the ‘variety’, ‘sample-size’, and

‘processing-method’. The final training and validation dataset sizes

were 400 and 100 images each, respectively. We further subsampled

the training and validation sets so we could determine a minimum

image set size to train an accurate model. Subsampling proportions

were set at 0.05, 0.10, 0.25, 0.50, and 1.0 of the entire dataset

splits (Table 2).

Object detection models were developed using a transfer

learning approach within Pytorch v2.0.1 (Paszke et al., 2019) in

Python 3.11.5 (Python Software Foundation, 2024). We used a

torchvision Faster RCNN model (Ren et al., 2017) with an

Imagenet1k v2 pretrained Resnet50 backbone (He et al., 2015), a

model previously used to detect a wide variety of seed objects

(Wang et al., 2022; Ouf, 2023; Islam et al., 2024). We froze all but

the final 3 convolutional stages in the backbone allowing us to

finetune the feature extractor and ROI head on our dataset as shown

in Figure 2. In addition, we changed the default anchor sizes of the

region proposal network from [32, 64, 128, 256, 512] to [8, 16, 32,

64, 128] to detect smaller objects in the image. Since the original

image size (W 7968 x H 5320) was very large relative to the average

seed object bounding box size (40 x 40 pixels), we did not resize the

images before training as this would have significantly reduced the

seed object sizes (e.g. when resized to 1024 x 1024, bounding boxes

would be in the range of 5–7 pixels wide). All pixel values were

normalized between 0–1 prior to model training.

The models were optimized using standard stochastic gradient

descent (SGD) with a learning rate of 0.01 and an exponential

learning rate scheduler and trained for a total of 100 epochs. We

logged batch and epoch training and validation loss to Tensorboard.

The model configuration was changed to return a total of 500

detections to allow for each object in the larger sample sizes to be

detected. We filtered out predictions with confidence scores lower

than 0.1, and then applied non-maximum suppression to the

detections with an IOU threshold of 0.5 to discard overlapping

predictions. Using these predictions, we calculated the mean

intersection over union (mIOU), and “macro averaged” mean

average precision (mAP) metrics for the validation dataset on

both a global and per class basis. Preliminary experiments were

FIGURE 1

Sainfoin seed image acquisition setup with (A) Sony model ILCE-

7RM2 DSLR camera, (B) LED lighting panels on both side of the

imaging platform, (C) Camera preview monitor, (D) solid blue

photography background mat, and (E) barcode scanner and laptop

for running camera utilities.

TABLE 1 Total ground truth label counts for each class and the

percentage composition within the full dataset.

Object count
Object
count

Class
percentage

Intact Pod (IP) 36,599 48.58%

Whole Seed (WS) 25,488 33.83%

Split Seed (SS) 13,255 17.59%

Sum 75,342 100.00%

Values in bold are the sum total of object counts across classes and sum of individual class

percentages.

TABLE 2 The total number of images in each training and validation

split for each proportion of the dataset used to train models.

Proportion
Training
images

Validation
images

0.05 20 5

0.10 40 10

0.20 80 20

0.50 200 50

1.00 400 100
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run in a Google Colab environment (Google Colaboratory, 2024)

with an A100 GPU to rapidly test training parameters in a Jupyter

notebook setting. All final models were trained in an Ubuntu 22.04

Linux environment with an AMD Ryzen 7–7840 CPU, 64Gb of

RAM, and an NVIDIA RTX 4060 GPU with single image batch size.

Inference was conducted in the same environment used for

final training.

To contextualize the flow of analyses described in the sections

below, Figure 3 provides an overview of how outputs from the

Faster R-CNN model were integrated with downstream methods,

FIGURE 2

Flow diagram of the Faster R-CNN model with a ResNet50 backbone. The initial convolutional stem (Layer 0) and the first ResNet stage (Layer 1)

were frozen to preserve low-level pretrained features, while Layers 2–4 were fine-tuned to adapt higher-level representations to the dataset. The

outputs from Layers 2–4 were combined by a Feature Pyramid Network (FPN) to generate multi-scale feature maps, which were processed by the

Region Proposal Network (RPN) and ROI head to produce final object predictions.

FIGURE 3

Flowchart of the analysis pipeline from images to final modeling results. The trained Faster R-CNN model produced seed object counts, which were

used to compute seed traits (PSS, Proportion of split seeds; PWS, Proportion of whole seeds; PIP, Proportion of intact pods; PE, Processing efficiency;

PEWS, Split seed penalized PE; PESS, Whole seed penalized PE; NOPGS, Number of seed objects per gram sample; NOPGM, Number of seed objects

per gram processed mixture; and Total Objects, Total number of predicted objects). These trait values informed exploratory analyses (clustering and

PCA), trait GLM modeling, and heritability estimation. Total seed object counts were modeled using a GLM and combined with the computed traits

for PE to conduct two-sample power analyses.

Meyering et al. 10.3389/fpls.2025.1655350

Frontiers in Plant Science frontiersin.org05

https://doi.org/10.3389/fpls.2025.1655350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


including trait computation, exploratory clustering, statistical

modeling, heritability analyses and power analyses.

Image inference and calculations

The final object detection model was used to run inference over

the entire dataset. We output images with bounding boxes of all

predicted objects, labeled by their predicted class and confidence

scores. The number of detected objects in each image classified as IP

or WS was recorded as-is, while the total number of objects

predicted in the SS was recorded as ½SS
2
� under the operating

assumption that each SS object detected was one of two halves of

a single WS. The total number of objects of all classes was summed

(“total_objects”) and the proportions of each class in the image were

calculated. This was repeated for all 500 images in the dataset. We

calculated the number of objects detected per gram of fruit pod

sample (NOPGS) and the number of objects detected per gram of

processed mixture (NOPGM).

Dehulling efficiency (DE, Equation 1) can generally be defined

based on the mass or on total counts of WS and SS as

DE = SS
WS+SS (1)

where SS and WS are either counts or weights of SS and WS,

respectively (Wang, 2008; Hlavangwani et al., 2025). Since the

preliminary processing methods we are testing result in

depodding as well as dehulling seeds, we defined PE in Equation

2 as

PE = WS+SS
IP+WS+SS (2)

further simplified in Equation 3 as

PE = PWS + PSS (3)

where PWS and PSS represent the proportions of the WS and SS

in relation to the total object count in a sample. PE is a modification

of the count-based efficiency metric in Hlavangwani (2025) which

can generally express how easy it is to process legume pods. As

processing needs may be different based on the desired end product,

whether WS or SS, we also calculated PE with a penalty parameter l

∈ [0, 1] for representing the amount of penalty to apply to the

proportion of either WS or SS. Equation 4 (PEWS) shows the

calculations made to penalize the proportion of SS and reward

the proportion of WS in the mixture while Equation 5 (PESS) shows

the penalty applied when SS are the desired outcome of the

processing method. For our experiments we chose a static value

of l = 0.6 for both PEWS and PESS, for a more balanced penalty, but

these could easily be tuned for more specific cases.

PEWS = PWS + PSS(1 − l) (4)

PESS = PWS(1 − l) + PSS (5)

Statistical analysis

Standard generalized linear regression models (GLMs) with the

structure total_objectsi = b0 + b1·varietyi + b2·processing_methodi +

b3·(varietyi×processing_methodi) + b4·sample_massi + ei were used

to model the ‘total_objects’ (sum of IP, WS, and SS) and estimate

the fixed effects of ‘variety’, ‘processing-method’ and their

interaction ‘variety’ X ‘processing-method’, while controlling for

‘sample-mass’. While we expected a strong linear relationship

between sample mass and seed object counts, we fit two models

to the training data subset, one with a Gaussian (linear) link

function and another with a Poisson link function, commonly

used for count data. The root mean square error (RMSE) and

mean absolute error (MAE) were used to compare the two models

evaluated on the validation set. The model with the lowest

combined metrics was chosen and retrained on the entire dataset.

A two-way , type I ANOVA was used to determine

significant factors.

GLMs with logit link functions were fitted to the proportional

count data for IP, WS, and SS to determine the effect of ‘variety’,

‘sample-size’, and ‘processing-method’ on the outcomes and

stability of these proportional estimates. Likelihood ratio tests

(LRT) were used to test the models against the null fit. Model

goodness offit (GOF) was determined using the Hosmer-Lemeshow

test (Hosmer et al., 2013), and Nagelkerke’s Pseudo-R2 was used to

determine how much deviance the model accounted for. The

estimated marginal means were used to conduct post-hoc analyses

for means separation using pairwise multiple comparisons with a

Tukey correction. PE estimates were also analyzed using logistic

regression models as described above. All models were checked for

the ANOVA assumptions before proceeding to post-hoc analyses.

Repeatability (R) was calculated for the PE estimates using

linear mixed models with the ‘variety’, environment’, and ‘variety’ X

‘environment’ as random effects where environment was set as a

concatenation of the ‘processing-method’ and ‘sample-size’. R was

calculated for a given trait as show in Equation 6.

RGxE =
s 2
G

s 2
G
+
s2
E
e +

s2
GxE
e +

s2
resid :
re

(6)

where s 2
G is the genetic variance component, s 2

E , is the

environment variance component, s 2
GxE is the GxE variance

component, s 2
resid : is the model residual variance, and r and e are

the total number of individual replications and unique

environments, respectively.

We performed a principal component analysis (PCA) as an

exploratory visualization of multivariate trait structure to

complement the formal statistical modeling of these variables.

The PCA matrix contained the relativized trait values for PIP,

PWS, PSS, PE, PEWS, PESS, NOPGS, NOPGM, and the total

number of seed objects for all observations. Variables were mean

centered and scaled to unit variance prior to analysis. The first two
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principal components were extracted and plotted on the x and y

axes with the rotational loadings of the variables projected onto

them to form a biplot, and individual data points were colored

according to the ‘variety’ and ‘processing method’. We performed a

principal component analysis (PCA) to determine the main

structure of the data and how the variety and processing method

groups relate to the variable loadings. To assess how well the

principal component space distinguished processing methods, we

fit a support vector machine (SVM) model with a linear kernel to

the first two principal components. Model performance was

evaluated by the classification accuracy for separating data points

according to processing method.

Additionally, we used the total within group sum of squares

(TWGSS), commonly used as an objective function in K-means

clustering, as a metric to characterize varieties using NOPGS and

NOPGM, and calculated as shown in Equation 7

TWGSS =o
C
i=1o

Ni

j=1,xj∈Ci
∥ xj − mi ∥

2 (7)

where C is the total number of classes, Ci is the set of datapoints

belonging to the ith class, xj is the j
th datapoint in the class out of Ni,

and mi is the centroid for the ith class.

Power analysis

We conducted a power analysis and developed intuitive

visualizations to evaluate our ability to detect differences in PE

across varieties and methods, with respect to fruit pod sample mass.

Our goal was to determine the minimum sample mass (in grams)

required to confidently detect an absolute difference of 0.25 in PE

between two samples, with a statistical power of at least 0.8. Briefly,

within each sample size group (1g - 5g, n=100 per group) we

calculated un-ordered absolute pairwise effect sizes resulting in a

total of ( n
2
) values per group. The absolute, two proportion effect

size hi,j was calculated as shown in Equation 8

hi,j = fi − fj
�

�

�

� (8)

where fi = 2 arcsin (
ffiffiffiffi

pi
p

) as described in Cohen (1988), with the

constraints i ≠ j, hi,j = hj,i for each sample pairwise calculation. The

non-centrality parameter is calculated as shown in Equation 9

d =
hi,j
ffiffiffiffiffiffiffi

1
ni
+ 1
nj

p (9)

where ni and nj are the total number of objects counted in the ith

and jth samples, respectively. Statistical power for each comparison

was calculated using the ‘pwr.2p2n.test’ from the ‘pwr’ package as a

two-sided test using the formula shown below in Equation 10

Pi,j = F(d − z1−a=2) +F( − d − z1−a=2) (10)

Where F is the normal CDF, and z1−a=2 is the critical z-value

for a two-tailed test.

We also simulated two-proportion theoretical power curves

based on equal sample sizes from 1 to 300 total objects and then

calculated the minimum proportional difference in PE that could be

detected with 80% power at each sample size. A given effect size

between two proportions near the extreme values of 0 and 1 is easier

to detect compared to proportions near 0.5 due to the structure of

proportional variance calculations (s 2
p =

p(1−p)
n

) leading to higher

statistical power at the extremes of the binomial distribution. We

calculated a best-case scenario when the proportional difference was

centered symmetrically on 0.85 (near the extreme) and a worst-case

scenario centered on 0.5, where statistical power is lowest. Finally,

we plotted out these values and related them to the minimum

sample size needed to detect a PE difference of 0.25 under

both scenarios.

Software packages

All deep learning models were trained in Python 3.11.5 with

Pytorch 2 (Paszke et al., 2019), using the packages ‘OpenCV’

(Bradski, 2000), ‘Torchmetrics’ (Detlefsen et al., 2022) and

‘Scikitlearn’ (Pedregosa et al., 2011). Data cleaning, generalized

linear modeling, PCA, power analyses, and graphing were

conducted using R 4.4 (R Core Team, 2025) in an RStudio

environment (Posit team, 2025) using a mixture of packages

‘caret’, ‘lme4’, ‘tidyverse’, and ‘pwr’ (Kuhn, 2008; Bates et al.,

2015; Wickham et al., 2019; Champely et al., 2020). Schematics

and diagrams were created using ‘Draw io’ (JGraph, 2021).

Results

Object detection modeling and inference

The training and validation loss decreased sharply for the first

ten epochs, after which the loss values started to stabilize and were

fully stable around 50 training epochs. The lowest training and

validation losses observed were with the model trained on the entire

dataset. However, the relative difference between the loss from

models trained on smaller proportions of the image set, excluding

the smallest subset size, were negligible.

On average, inference took 100–105 ms per image in our

environment. The overall mIOU score as well as class based

mIOU metrics were calculated for each of the models after

TABLE 3 Mean Intersection over Union (mIOU) values between the

predicted bounding boxes and ground truth for each class of seed

object in the dataset.

Object class
Percentage of dataset

5% 10% 20% 50% 100%

Intact Pod (IP) 0.8915 0.8962 0.9004 0.9032 0.9046

Whole Seed (WS) 0.8689 0.8751 0.8789 0.8829 0.8852

Split Seed (SS) 0.8519 0.8610 0.8639 0.8695 0.8732

Mean 0.8772 0.8831 0.8869 0.8905 0.8926

Columns represent the percentage of the full training and validation dataset that were used to

train the model. Values in bold are the average mIOU values across classes.
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training. The results are shown in (Table 3). mIOU was generally in

the range of 0.8-0.9 and increased slightly with increasing dataset

size. The highest overall mIOU (0.8926) was achieved when the

model was trained on 100% of the total dataset but was not

drastically higher than the overall mIOU on 50% of the data

(0.8905). Class based mIOU was highest for IP (0.9046) and

lowest for the SS (0.8732), which mirrors the unbalanced

distribution of IP, WS, and SS annotations in the dataset. mAP

scores are presented for each class, the overall average, and across

objects with 50% and 75% IOU (Table 4). IP mAP peaked at 0.6994

at 50% of the dataset, while WS and SS had the highest mAP (0.7212

and 0.7136, respectively) at 100% of the dataset. The overall mAP

macro averaged across classes was lowest when trained on 5% of the

data (0.6620) and highest at 100% of the data at 0.7113. mAP50 and

mAP75 both peaked at 0.9831 and 0.9257, respectively, at 50% of

the data.

Both mIOU and mAP were highest in the models trained on

50% and 100% of the data. We selected the model trained on the full

training set as the final model to use for inference for all

downstream analyses. After processing all the images through the

model, we used the resulting predictions to draw bounding boxes

over all images. Almost every seed object was detected properly and

with reasonable bounding boxes (Figure 4A). In a few cases the

model had a difficult time identifying SS, particularly when they

were touching or when there were tightly clustered groups of objects

as in Figure 4B.

Predicted seed object counts

The total object counts from the FasterRCNN model output (I

P +WS + SS
2
) was modeled using generalized linear models with

factors ‘variety’, ‘processing-method’ and their interaction plus a

controlling term for ‘sample-mass’ with both linear and Poisson

link functions. While Poisson regression is standard for modeling

counts and our model fit had a high pseudo-R2 value (0.948), the

model predictions for the holdout set were not sufficiently accurate

(RMSE = 14.467, MAE = 13.085), and it failed to outperform the

standard linear model (R2 = 0.986, RMSE = 6.874, MAE = 5.316).

Figure 5 shows the highly linear relationship between the total

object count and the GLM model predictions (r=0.9931) and the

Bland-Altman measurement correspondence between the ground

truth and GLM predictions. After refitting the linear GLM on the

entire dataset, an ANOVA revealed that the ‘variety’ was highly

significant (p < 2.2e-16), as was the ‘processing-method’ (p = 4.42e

−15), when controlling for ‘sample-mass’. There was no evidence of

their interaction (p = 0.238). The mean seed object counts for each

sample size, marginalized over method, and variety were 46, 92, 137,

183, and 230 for 1g - 5g, in order – on average an increase of 46.12

seed objects in the processed mixture. However, this varied

drastically across varieties. ‘Eski’ and ‘AAC Mountainview’ had

the highest seed object counts per gram increase in fruit pod sample

mass (60 total detected objects) compared to varieties like ‘Delaney’

and ‘Rocky Mountain Remont’ (32 and 42 total detected objects)

when keeping other factors constant. Interestingly, processing the

FIGURE 4

Faster RCNN predictions on representative images from left to right with no crowding (A) and some crowding (B). In situations with crowding, the

minor class is sometimes misclassified or remains undetected.

TABLE 4 Mean Average Precision (mAP) per class values at 50% and 75%

mIOU threshold.

Object class
Percentage of dataset

5% 10% 20% 50% 100%

Intact Pod (IP) 0.6679 0.6742 0.6908 0.6994 0.6992

Whole Seed (WS) 0.6720 0.6995 0.7050 0.7167 0.7212

Split Seed (SS) 0.6462 0.6705 0.6831 0.7059 0.7136

Mean 0.6620 0.6814 0.6930 0.7073 0.7113

mAP 50 0.9104 0.9039 0.9641 0.9831 0.9656

mAP 75 0.8269 0.7936 0.8915 0.9257 0.9103

Columns represent the percentage of the full training and validation dataset that were used to

train the model. Values in bold are the overall mAP values 'macro averaged' across all classes.
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same pod sample mass by different methods resulted in differing

amounts of product loss. Impact dehulling resulted in ≈ 4 fewer

detected objects compared to belt threshing - a small effect size, but

highly significant (p = 4.42e−15).

Seed object analysis

We hypothesized that the proportional estimates of each class of

objects in the processed mixture would stabilize with increasing

sample size, i.e. a given estimated mean would converge to one

reliable value per ‘variety’ X ‘processing-method’ combination and

would have lower variance in the estimates across the 10 replicates.

We performed some descriptive statistical analysis of this

experiment to validate this. Three GLM models were fit to the

PIP, PWS, PSS data were - all well specified (LRT p-values « 0.0001,

Hosmer-Lemeshow p-values ≈ 1, Nagelkerke pseudo-R2
≥ 0.99).

However, in general, the value of seed object proportional estimates

did not stabilize as sample size was increased but tended to either

increase or decrease linearly with changes in sample mass as

described below.

The proportion of IP in the resulting processed seed mixtures

increased across all varieties, regardless of the processing method as

sample mass increased (Figure 6A). The variety ‘AAC

Mountainview’ had the lowest proportion of IP in the mixture

after processing (0.308) while varieties ‘Rocky Mountain Remont’

and ‘Shoshone’ had the highest (0.607 and 0.621, respectively)

marginalized across processing method and sample mass. The

processing method also significantly impacted the IP proportions

- the belt thresher tended to leave more IP intact when compared to

the impact thresher (0.546 versus 0.459, p < 2.2e-16). Within each

variety, belt threshing always resulted in higher IP counts compared

to the impact dehuller, except in the case of ‘AAC Mountainview’,

where the estimates for each method were similar (see Figure 6A).

Table 5 shows the marginalized means across sample sizes.

Processing by belt thresher resulted in a wider range in the IP

proportions between varieties from 0.299 (‘AACMountainview’) to

0.662 (‘Shoshone’), whereas the impact dehulling proportion range

was more constrained from 0.316-0.577.

The overall trend in change for whole seed proportions

depended on the method. In belt threshed samples, whole seeds

decreased in number with increasing sample size across all varieties

FIGURE 5

Comparison of total object counts with GLM-predicted seed object counts. (A) Scatterplot showing the linear relationship between the ground-truth

total seed objects detected in each image (x-axis) and the seed object counts predicted by the GLM model (y-axis), which included ‘variety’,

‘processing method’, and ‘sample mass’ as predictors. The solid black line represents the fitted regression line between the two variables, while the

dotted line indicates the 1:1 correspondence line (perfect agreement). (B) Bland–Altman plot assessing agreement between ground-truth and

predicted counts. The x-axis shows the mean of each ground-truth–prediction pair, and the y-axis shows the difference between prediction and

ground truth. The dotted lines indicate the limits of agreement, defined as ±1.96 × SD of the differences.
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- 0.573, 0.480, 0.441, 0.374, and 0.353 for 1-5g, respectively,

marginalized across varieties. However, proportions stayed mostly

constant for impact threshed samples with values ranging from

0.296 to 0.334 for all varieties and sample sizes, and there were very

few significant differences across sample sizes within each variety

(Figure 6A). On average, belt threshing resulted in a larger

proportion of whole seeds (0.443) compared to impact dehulling

(0.321, p <2.2e-16). ‘Rocky Mountain Remont’ and ‘Shoshone’ had

the lowest proportions of whole seeds (0.322 and 0.330) compared

to ‘AAC Mountainview’ and ‘Delaney’ (means of 0.419 and 0.512).

However, there was a large difference between the average seed

proportion between belt threshing and impact dehulling for ‘AAC

Mountainview’ and ‘Delaney’ (proportional difference of 0.341 and

0.161) that was not present for other varieties (m̂ = 0.037).

The proportion of SS in the processed mixtures was very low

overall (estimated marginal mean = 0.0399, Figure 6A). Within belt

threshed samples, SS were present in extremely low proportions

relative to other seed objects (0.00715), whereas impact dehulled

samples were much more likely to contain splits (0.194,

marginalized across variety and sample mass). Within impact

dehulled samples, varieties ‘AAC Mountainview’ and ‘Delaney’

had SS proportions of 0.338 and 0.282, estimated over all sample

sizes, whereas ‘Shoshone’ contained very few SS (0.088, Table 5).

Within belt threshed samples, ‘ACC Mountainview’ and ‘Delaney’

had the highest SS proportions ranging from 0.012-0.015, and were

significantly different from the other varieties, which ranged from

0.004-0.006. Increasing the sample size had a negative impact on the

SS proportions when the samples were processed by impact

dehulling and decreased the average estimate from 0.301 (1g) to

0.125 (5g). Even though the proportional point estimates for each

object class were not stable as the sample size was increased, the

standard error of the model estimates was reduced as

expected (Figure 6B).

Processing efficiency calculations

Processing efficiency (PE) was calculated as the sum of the WS

and SS proportion. PE variations PESS and PEWS penalize higher

proportions of WS and SS, respectively. Unpenalized PE had a

negative relationship with sample mass across the methods and

varieties (Figure 7). The marginal mean PE for 1g samples was 0.602

FIGURE 6

(A) Estimated marginal means (proportion) ± 95% CI of the proportions of processed mixture objects (grid rows), by sainfoin variety (grid columns),

processing method (blue=belt thresher, green=impact dehuller), and sample mass (g) on the x-axis. Means within a subplot that have letters in

common were not shown to be statistically significantly different from each other at a=0.05. (B) Standard error of the estimated marginal means of

the proportions of processed mixture objects compared across sample mass (g) and marginalized over varieties.
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and dropped to 0.413 for 5g samples across varieties and methods.

‘AAC Mountainview’ had the highest overall PE at 0.692, ‘Rocky

Mountain Remont’ and ‘Shoshone’ had far lower PE on average

(0.393 and 0.379). Processing method had a small but significant

effect on PE (p < 2.2e−16) - impact dehulled samples had a PE of

0.541 on average compared to 0.454 for belt threshed samples.

PEWS was slightly lower on average than unpenalized PE (0.427

versus 0.498). ‘AAC Mountainview’ still had the highest PEWS

(0.588) while ‘Shoshone’ was the lowest (0.350). PEWS was had a

negative correlation with sample size for belt threshed samples

however, but the relationship was not as pronounced with impact

dehulled samples (Figure 7). Marginal estimates for PEWS across

TABLE 5 Estimated marginal means of seed object proportions marginalized over sample mass.

Variety Method Intact pod Whole seed Split seed

AAC Mountainview Belt Thresher 0.299 ± 0.013 d 0.682 ± 0.013 a 0.015 ± 0.003 a

Delaney Belt Thresher 0.484 ± 0.015 c 0.501 ± 0.015 b 0.012 ± 0.003 a

Eski Belt Thresher 0.622 ± 0.013 b 0.373 ± 0.013 c 0.005 ± 0.002 b

Rocky Mountain Remont Belt Thresher 0.661 ± 0.013 a 0.335 ± 0.013 d 0.004 ± 0.002 b

Shoshone Belt Thresher 0.662 ± 0.013 a 0.331 ± 0.013 d 0.006 ± 0.002 b

AAC Mountainview Impact Dehuller 0.316 ± 0.013 d 0.341 ± 0.013 a 0.338 ± 0.012 a

Delaney Impact Dehuller 0.371 ± 0.015 c 0.340 ± 0.015 a 0.282 ± 0.013 b

Eski Impact Dehuller 0.491 ± 0.014 b 0.287 ± 0.012 c 0.215 ± 0.011 c

Rocky Mountain Remont Impact Dehuller 0.550 ± 0.014 a 0.310 ± 0.013 bc 0.132 ± 0.009 d

Shoshone Impact Dehuller 0.577 ± 0.014 a 0.329 ± 0.013 ab 0.088 ± 0.008 e

Values presented are the marginal means ± 95% CI of the estimate. Means within a processing method that share a common letter were shown not to be statistically significantly different from

each other at a=0.05.

FIGURE 7

Estimated marginal means (proportion) ± 95% CI for processing efficiency metrics PE, PEWS, and PWSS, (grid rows), by sainfoin variety (grid columns),

processing method, and sample mass (g) on the x-axis. Means within a subplot that have letters in common were not shown to be statistically

significantly different from each other at a= 0.05.
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varieties and sample sizes were significantly higher (p = 2.5e−05) for

belt threshed samples (0.447) compared to impact dehulling

(0.408), though the effect size was small.

The overall marginal mean of PESS was lower than any other PE

computations at 0.25. There were strong varietal differences, again

with ‘AAC Mountainview’ having the highest estimate at 0.378 and

‘Shoshone’ the lowest at 0.176 (p < 2.2e−16). Belt threshed samples

had significantly lower PESS compared to impact dehulled samples

(0.179 compared to 0.337, p < 2.2e−16) when marginalized across

‘variety’ and ‘sample-mass’. All PESS estimates decreased with

increasing sample size across varieties and methods (0.326 for 1g,

0.197 for 5g). Repeatability (R) was calculated for all the PE traits.

RPE was close to 1 (0.9913), as was RPESS
(0.9787). Repeatability for

PEWS was still high, but slightly lower than the other two

repeatability estimates (0.8702).

Clustering and PCA

Figure 8 illustrates the relationship between the number of

objects per gram sample (NOPGS) and per gram processed mixture

(NOPGM) in both methods. We observed overall mean counts of

45.7 for NOPGS while NOPGM was slightly higher at 57.2. Samples

processed with the impact dehuller had a lower average NOPGS

(44.5), but higher average NOPGM (59.3) compared to those

processed with the belt thresher (46.8 and 55.1, respectively, p <

2.2e-16). Varietal differences were consistent across processing

methods. ‘Delaney’ exhibited the lowest counts for both NOPGS

and NOPGM (39.9 and 52.4, respectively), while ‘Eski’ and ‘AAC

Mountainview’ were the highest for both measurements (NOPGS =

49.5 and 50.2, and NOPGM = 60.5 and 66.0). We calculated the

total within group sum of squares (TWGSS) for each processing

method as a measurement of dispersion. TWGSS was substantially

lower for belt-threshed samples (2139.7) than for impact-dehulled

samples (4682).

The first two PCA components capture approximately 75% of

the variation in the data, and when the varieties are projected onto

the components, they cluster together along the first component

axis for most data points (Figure 9A). As revealed by logistic

regression modeling, the PE traits contributions are strongly

associated with the majority of the ‘AAC Mountainview’,

‘Delaney’, and ‘Eski’ datapoints, the three varieties with the

highest PE. Most of the PIP contribution to the data lies along

PC1 and associated with varieties ‘Rocky Mountain Remont’ and

‘Shoshone’, both of which had the lowest overall PE. However, what

is most interesting is the stark contrast in clustering of processing

methods shown in Figure 9B. A simple linear kernel SVM trained

on the first two principal components of the training set achieved

99% accuracy on the validation holdout. PIP was strongly associated

with most of the belt threshing datapoints and varieties with low PE.

Whereas PWS and PEWS were much more associated with belt

threshed samples of ‘AAC Mountainview’ and ‘Delaney’. As

expected, the main contributions of PESS and PSS lie along impact

dehulled samples and away from belt threshed samples.

Power analysis

Figure 10 shows the effect of increasing fruit pod sample size (g) on

the ability to reliably detect small differences between two sample

proportions of each sample’s PE. The greyed-out region on the lower

half of the graph represents all the pairwise power tests conducted

FIGURE 8

Scatterplot relating the number of objects per gram sample (NOPGS, x-axis) and the number of objects per gram of processed mixture (NOPGM, y-

axis) for (A) belt thresher processed samples and (B) impact dehuller processed samples. The total number of objects is the sum of all sainfoin seed

pod derived material which includes IP, WS, and SS. TWGSS is the total within variety group sum of squares used as a measure of group

compactness.
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which had a power of less than 0.8. The target region, outlined in green,

indicates comparisons with at least 80% statistical power and a PE

difference no greater than 0.25. Over all sample sizes, 41.7% of

comparisons made had at least 80% power, but only 17.7% of

comparisons within the 1g sample size group had the same power.

When only 1 gram of fruit pods was sampled and processed, only

medium to larger differences in PE (> 0.28), on average, could be

detected reliably at or above Pi,j = 0.8 between any two processed

samples i and j. Out of the 4950 ( n
2
) comparisons made in the 1-gram

sample group, only 17 lay in the target zone. However, as the sample

size was increased to 2g, the lower limit of detection measured was a

mean PE difference of 0.203 with 511 comparisons in the target zone,

followed by 0.165 for 3g samples, 0.135 for 4g, and 0.125 for 5g. The

lower detection limit gains made by increasing the sample size show a

non-linear trend, with the greatest gain made when the sample size

increased from 1 to 2 grams.

We also simulated the power between two samples containing

an equal number of detected objects, from 1 to 300, and then

calculated the minimum PE spread detectable under two scenarios:

a best-case scenario centered symmetrically at 0.85, and a worst-

case scenario centered at 0.5 where proportional variance is highest

and power is lowest. Figure 11 shows the results and how they relate

to sample mass. The greatest gain in detection power between two

samples comes within the first gram of fruit pods sampled. While

one gram of sample contains approximately 46 total objects when

processed, proportional differences lower than 0.25 are only reliably

detected with enough power when sample proportions are centered

at the extremes (i.e. at 1 gram PE1 − PE2j j = 0:206), a relatively large

effect size (hi,j = 0:617). When the difference is centered on 0.5, the

lower detection limit is considerably higher (at 1 gram PE1 − PE2j j =
0:289 ≥ 0:25) even though this corresponds to a slightly smaller

absolute effect size (hi,j = 0:586). However, sample sizes of at least two

grams are sampled (average of 92 seed objects in the processed

mixture), both the worst case and best-case scenarios are firmly below

the 0.25 target difference - PE1 − PE2j j = 0:147 when centered at 0.85,

and PE1 − PE2j j = 0:206 for two samples centered at 0.5. Taken

together, these two curves form the range of a reasonable lower limit

of detection at 80% power that can be used to find the minimum

sample size needed to detect a given absolute difference in PE between

two samples.

FIGURE 9

Principal component analysis (PCA) biplots of the first two components from the relative processing traits conditioned on (A) sainfoin variety

(B) processing method. Arrows with labels represent the PCA loadings of each of the variables to the principal directions with longer arrows

contributing more to the first two components than shorter arrows. The first two components captured almost 75% of the variance in the data PSS,

Proportion of split seeds; PWS, Proportion of whole seeds; PIP, Proportion of intact pods; PE, Processing efficiency; PEWS, Split seed penalized PE;

PESS, Whole seed penalized PE; NOPGS, Number of seed objects per gram sample; NOPGM, Number of seed objects per gram processed mixture;

Num. Obj., Total number of seed objects.
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Discussion

In this study, we combined deep learning–based object

detection with classical statistical modeling to develop a

framework for quantifying sainfoin seed pod PE. Our approach

demonstrated that accurate seed object detection can be achieved

with relatively few training images when imaging conditions are

controlled, and that model-assisted labeling substantially reduces

annotation burden. Through factorial experiments, we revealed that

PE is strongly influenced by both processing method and variety,

highlighting physical constraints in pod dehulling and threshing. By

introducing a generalized PE metric, we quantified varietal

differences with high repeatability and established minimum

sample sizes required for robust comparisons between breeding

lines. Collectively, these findings illustrate how integrating

computer vision with power-based statistical principles can

provide plant breeders with reliable, reproducible, and high-

throughput methods for evaluating seed processing traits.

Dataset creation

Scientific imagery has advantages over images collected “in the

wild”, one being that images can be collected in as precise a format

as time and budget constraints allows. Image sets collected with the

same camera, software and ambient conditions allow one to train an

accurate model with very few images - 80 in the present case. We

recognize that images collected over a wide range of scenes,

backgrounds, scales, and ambient conditions aid in training more

generalizable models. But for most research settings, this may not be

strictly necessary if the data acquisition pipeline is not prone to

change and/or there is no evidence of model overfitting. That

notwithstanding, a robust set of image augmentations as

employed in the current work may be used to help regularize the

model - see Kaur, Khehra, and Mavi (Kaur et al., 2021) for a review

of appropriate methods. Additionally, researchers may take

advantage of semi-supervised learning methods when unlabeled

data far outweighs the labeled images (Sohn et al., 2020; Zhang et al.,

2021). We have published our full dataset on Zenodo for further

research along these lines (Meyering et al., 2023).

Deep learning modeling

Deep learning object detection models can remove most of the

dataset specific parameter tuning by learning the general features of

a class of objects regardless of inconsistencies in background and

other ambient conditions. However, this results in large amounts of

frontloaded work for researchers due to time associated with image

labeling, which could be a heavy lift for small breeding programs.

Hand-labeling one image took approximately 8–9 minutes to

annotate on average across sample sizes, with images from the

smaller sample sizes taking considerably less time and larger sample

images taking upwards of 15 minutes. To overcome this, we labeled

approximately 100 images and then trained a foundation model to

use for model assisted labeling. This model, while not perfect, did a

fair job of pre-labeling the rest of the images. We estimated that this

reduced labeling time to ≈ 1 minute per image.

FIGURE 10

Effects of sainfoin fruit pod sample mass (g) on statistical power to

detect absolute differences in PE between two samples, PEi − PEj

�

�

�

�.

Pairwise power tests were performed within each sample mass

group. The horizontal dashed line indicates a power threshold of

0.8. The solid vertical line marks our target absolute proportional

difference of 0.25 in samples’ PE. The target detection region (light

green background) indicates the area where PEi − PEj

�

�

�

� ≤ 0:25, and

Pi,j ≥ 0:8. Colors denote different sample masses. X-axis is truncated

to 0.45 for clarity, at the expense of removing comparisons with

large effect sizes and power nearing 1.0.

FIGURE 11

Two-proportion power curves generated for two proportional PE

values with equal number of observations. Each curve’s values

represent the minimum proportional difference in PE that can be

detected with 80% power at the given number of observations (total

number of objects in the processed mixture). Y-axis is truncated to

0.5 to only show PE differences in the intended range. Vertical

dotted lines indicate the average number of total objects in the

processed mixture for each sample size, marginalized across

varieties.
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Our model training experiment on 5 and 10% of the dataset

resulted in models with decent performance regarding mIOU

(0.877-0.883), mAP50 (0.904-0.91) and mAP75 (0.7936-0.827)

(Tables 3, 4). When trained on 20-100% of the dataset, the model

performance improved, particularly in terms of SS detections,

though models trained on the entire training set were not

significantly more accurate than models trained on 50% of the

training set. Since our dataset includes images taken of three

standard classes against a consistent background with consistent

lighting, the intra-dataset variability of the images is low, which

explains the low number of images required. The training dataset

size requirements would be different for images captured under

more variable conditions (e.g. multiple backgrounds and image

scales). Additionally, alternative classification loss functions

designed to mitigate class imbalance such as recall loss or focal

loss could help improve detections of the minority class, SS (Lin et

al., 2017; Tian et al., 2022).

While Faster R-CNN remains a highly accurate detector, it is

generally less computationally efficient than newer single-stage

architectures such as EfficientDet or models in the YOLO (You

Only Look Once) family (Tan et al., 2020; Jiang et al., 2022).

Building on the results presented here, our dataset offers a strong

basis for a systematic comparison of these architectures for small

object detection in controlled imaging environments. Future work

could use the current dataset to quantify performance differences in

terms of accuracy, inference time, and computational requirements,

clarifying the trade-offs between speed and precision. Such analyses

would be particularly valuable for guiding deployment in real-time

seed counting applications, including integration with seed sorters

or conveyor-based sampling systems, but lay outside the scope of

the present work.

Seed object modeling

We developed a multiple regression model to predict the

number of total seed objects of a given variety and sample mass

so that we could use the predictions to generate power curves. Due

to the linear response with sample mass, the linear model

outperformed the Poisson count model, which was not surprising

(Figure 5). The GLMs fit to the proportional data, however, were

surprising. Our initial hypothesis was that at lower sample masses

(1-2g) the variance of the proportional measurements over the 10

random replicates would be high but would decrease as the sample

mass increased to 4-5g while the proportional estimates stayed

constant. However, contrary to our hypothesis, the proportional

estimates were not stable across sample sizes, though the standard

error of the marginal means of the measurements did decrease as

sample size increased as expected (Figure 6). This indicates that

there are processing method-based effects on the seed proportions

that are dependent on the number of pods physically fed into the

instrument at one time. The clear indications of this are the

increased rate of intact pods left in the dehulled mixture as the

sample mass was increased. This was true across both methods and

varieties. There was a strong interaction between the sample mass

and method for the resulting proportion of seeds - increasing

sample amount resulted in far fewer whole seeds for impact

dehulling but had relatively little impact on the seed proportion

estimates of all varieties for belt thresher processed samples. This is

contrasted with sharp decline of split seeds for impact dehulled

samples with increasing sample mass, while split seeds in the belt

threshed samples were consistently low across all varieties and

sample masses.

We can draw several conclusions from this. First, there are

physical limitations to how well sainfoin pod samples are processed

depending on the sample mass and variety. Across the board, higher

proportions of IP were left in the mixture as sample mass increased

suggesting either that the machines were both overloaded with

sample and could not process them effectively, or that the samples

were not processed for a long enough period relative to the sample

mass. We set the physical parameters of the belt thresher and

impact dehuller ahead of time based on running test samples of 1-2g

through the instruments, as well as experience from processing 1g

samples. It is highly possible that the resultant PE estimates would

have been higher had we processed samples for a longer period.

Several other studies have focused on optimizing small sample

processing methods for small grains (Doehlert and McMullen,

2001; Doehlert and Wiessenborn, 2007; Oomah et al., 2010; de

Figueiredo et al., 2013). However, most have focused on tuning

machine parameters (timing, grain parameters, etc.) for a fixed

sample size. It is reasonable to assume that sample mass specific

settings would allow us to optimize our methods further.

Unfortunately, we did not have the resources to investigate

different machine parameters any further at the time of this project.

Second, the increase in pod proportion is offset by a decrease in

the number WS for belt threshed samples and a decrease in SS for

impact dehulled samples. SS were almost nonexistent in belt

threshed samples, while they were much more prevalent in

impact dehulled samples (Table 5). The WS proportion was

constant and less than 0.4 in impact threshed samples. This

highlights the importance of choosing the correct instrument for

processing depending on the desired end product, whether WS

or SS.

Measuring processing efficiency

In contrast with other processing studies, we did not measure

DE, but instead a new, general metric, PE, which includes both WS

and SS in the calculation. We found that PE was highly dependent

on the sainfoin variety and sample size (Figure 7). Others have

observed differences in legume grain DE based on variety and grain

quality parameters using techniques such as response surface

methodology (Wang, 2005; Goyal et al., 2008; Wang, 2008;

Ndukwu et al., 2019). While we did not test the grain moisture

content as this was not a factor for our experimental design, all

seeds were stored under the same environmental conditions for a

considerable time before processing, making any measurable

differences in grain moisture between varieties an unlikely cause

of the observed contrasts in PE. Our repeatability estimates for the
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PE traits were very high (» 0.85) and indicate that while our varietal

PE themselves were not as high as most DE estimates in the

literature, there is a great deal of genetic variance represented in

the commercial varieties tested that could be exploited in a breeding

program focused on sainfoin lines with good seed processing traits.

We calculated the number of objects per gram fruit pods sample

(NOPGS) as well as the number of seed objects per gram of

processed mixture (NOPGM) and compared them using

clustering metrics. For both methods, the relationship between

them was linear, as expected, and the varieties tended to cluster

together. However, the within group cluster sum of squares for the

belt thresher was less than half of that for impact dehulled varieties,

indicating more compact and uniform varietal processing responses

under belt threshing compared to impact dehulling (Figure 8). This

could suggest that impact dehulling creates more fractured SS (i.e.

more than 2 SS per WS) and may also result in many of these SS

being removed with the processing debris such as empty seed pods

and seed hulls. Impact dehulling, which uses centrifugal force and

impact paddles is, in general, the more forceful processing method

(Singh et al., 2024; Singh and Rao, 2025) compared to belt

threshing, which is focused on gently removing the outer

pericarps or husks while minimizing damage to the seed

(Mesquita and Hanna, 1993; Adanu et al., 2025).

We chose to use fixed equipment settings and processing times

for the belt thresher and the impact dehuller based on our previous

experiences processing sainfoin pods. Increasing the number of

sample passes through the belt thresher could feasibly result in

fewer IP and more WS with little risk of creating more SS. However,

it is reasonable to expect that processing samples with increased

time and/or speed in the impact dehuller would result in more SS

(and more broken SS) than what we reported. As this is, to our

knowledge, the first publication regarding sainfoin seed pod

processing, a factorial experiment with different equipment

settings was beyond the scope of this study. We reported PE

metrics for each processing method which includes all three seed

object classes IP, WS, and SS, but the results of the current study

suggest that DE could be calculated by a two-stage processing

method by first depodding with the belt thresher and then

dehulling the resulting WS sample with the impact dehuller.

There is a great need for additional follow-up studies regarding

the appropriate processing machinery and machinery settings, and

establishing the relationship between seed pod traits such as size

and moisture content, and processing traits like PE and DE.

Choosing the correct sample size

While the processing experiment shed some light on the nature

of seed pod processing with many replications, the main goal was to

determine the minimum detection limits between the difference of

two single samples’ PE at any sample mass. Since it is much more

convenient to evaluate many breeding lines on a single plant, single

sample basis, we need an accurate estimate of the power of any

comparison between two plants. In our analysis, we modeled two

scenarios to determine the lower bounds of the detection limit

between two samples with at least 80% power. We found that while

sub-1g seed samples are far under-powered regarding the ability to

discriminate between two samples’ PE centered on 0.5, it is possible

to detect differences of around 0.20 with samples that are on the

extremes of the distribution (say 0.95 and 0.75) at 1g (Figure 10).

Our also results indicate that if we want to reliably detect a 0.25

absolute difference in PE between two sainfoin samples no matter

where the two proportions lie on the binomial distribution, sample

sizes should be at least 2g (Figure 11). If the PE values are closer to 0

or 1, smaller absolute differences down to 0.147 are reliably

detected. Larger 4-5g samples afford reliable discrimination of

smaller differences in PE with 80% power, but among the PE

values we tested in our study, the lowest difference in PE was

only 0.094 between two 5g samples. Detecting differences lower

than this with sufficient power would require sample masses far

greater than what we used for this study.

Historic sainfoin pod yields in our single plant field trials range

from 2–75 grams per plant (data not shown). A 2g sample is a

reasonable sample mass for greenhouse grown plants, and at that

sample size, we can readily screen out lines with high vs low PE. Our

pairwise analysis of the measured power for difference in PE

between any two 2g samples reveals that 1,752 out of 4,950

comparisons had a statistical power above 0.8. Of these

comparisons, the average effect size was 0.63 which indicates only

medium-large PE spreads can be reliably discriminated at 2g.

Additionally, there are other constraints based on convenience

to consider. We imaged processed samples using a large format

platform and camera to capture the entirety of 5g samples.

However, it may be convenient to image samples in a weigh boat

or on a smaller platform in the processing pipeline where a 4-5g

sample may be too crowded to allow accurate seed object detection.

When making decisions such as these, researchers should consider

the power cost associated with smaller sample sizes.

While we presented a theoretical power analysis based on the

absolute difference in our PE proportions, it is also possible to

conduct similar power analyses on penalized PE. Since PESS and

PEWS deviate from a binomial/multinomial distribution as they are

linear combinations of random variables, one would need to

estimate the variance using the delta method (Oehlert, 1992) or a

simulation analysis and adjust the power calculation in Equation 10

accordingly. Such analysis is beyond the scope of the

present investigation.

In breeding programs targeting new or underutilized crops,

such as sainfoin, it is critical to ensure that phenotyping methods

are not only innovative but also demonstrably capable of capturing

the traits necessary to achieve defined breeding objectives. Unlike

well-established crops with mature breeding pipelines, novel species

often require the parallel development of reliable, scalable

phenotyping tools that can meaningfully inform selection indices

and advancement decisions. The findings presented here

underscore the importance of method validation—unproven or
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noisy trait estimates can compromise selection accuracy, limit

genetic gain, and obscure promising germplasm. By establishing

the reliability and discriminative potential of phenotyping

approaches early in the breeding process, programs can better

align trait measurement with long-term goals for crop

improvement. This is especially important in the context of exotic

germplasm development, where broader trait exploration is

common and breeding targets may span agronomic performance,

nutritional value, and environmental adaptation. Ultimately, such

rigor in trait measurement enhances the efficiency and impact of

breeding strategies, supporting broader goals in food security,

ecosystem resilience, and the development of climate-

adapted crops.

Conclusion

The present study developed and applied an image-based

phenotyping pipeline for processing efficiency in sainfoin. First,

we trained a Faster R-CNN model that successfully detected and

classified intact pods (IP), whole seeds (WS), and split seeds (SS)

with mAP75 of 0.9257. Second, we introduced a generalized metric,

processing efficiency (PE), which effectively summarized the

proportion of depodded and dehulled seeds after processing

sainfoin pods. Third, our factorial analysis showed that processing

method had the largest influence on PE, while the variety

contributed additional but smaller effects [insert significant p-

values or effect sizes if possible]. Fourth, power analysis indicated

that sample sizes below 2g lacked sufficient power to reliably detect

our target proportional difference in PE of 0.25 between two

samples with 80% statistical power, underscoring the risks of

under-sampling in breeding programs. Finally, by integrating

deep learning–based object detection with classical statistical

modeling, we demonstrated a scalable, accurate, and reproducible

framework for high-throughput phenotyping of seed processing

traits. Our findings establish minimum sample sizes for robust

estimation of seed processing traits in sainfoin and highlight the

potential of this approach to advance breeding selection indices and

accelerate the improvement of existing sainfoin germplasm to

establish it as a perennial legume grain crop.
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Fruit Processing - Object Detection Dataset (Zenodo, Geneva, Switzerland: Zenodo). Available
online at: https://zenodo.org/records/10009966 (Accessed June 25, 2025).

Morales, M. A., Worral, H., Piche, L., Adeniyi, A. S., Dariva, F., Ramos, C., et al.
(2024). High-throughput phenotyping of seed quality traits using imaging and deep
learning in dry pea. bioRxiv. Available online at: https://www.biorxiv.org/content/early/
2024/03/06/2024.03.05.583564 (Accessed June 25, 2025).

Ndukwu,M. C., Ekop, I. E., Etim, P. J., Ohakwe, C. N., Ezejiofor, N. R., Onwude, D. I., et al.
(2019). Response surface optimization of Bambara nut kernel yield as affected by speed of
rotation, and impeller configurations. Sci. Afr. 6, e00174. doi: 10.1016/j.sciaf.2019.e00174

Oehlert, G. W. (1992). A note on the delta method. Am. Stat. 46, 27–29. doi: 10.1080/
00031305.1992.10475842

Oghbaei, M., and Prakash, J. (2016). Effect of primary processing of cereals and
legumes on its nutritional quality: A comprehensive review. Cogent Food Agric. 2,
1136015. doi: 10.1080/23311932.2015.1136015

Oomah, B. D., Ward, S., and Balasubramanian, P. (2010). Dehulling and selected
physical characteristics of Canadian dry bean (Phaseolus vulgaris L.) cultivars. Food Res.
Int. 43, 1410–1415. doi: 10.1016/j.foodres.2010.04.007

Opoku, A., Tabil L, S. J., Crerar, W., and Park, S. (2003). Conditioning and dehulling
of pigeon peas and mung beans. In The Canadian society for engineering in agricultural,
food, and biological systems. Mansonville, QC, Canada

Ouf, N. S. (2023). Leguminous seeds detection based on convolutional neural
networks: Comparison of Faster R-CNN and YOLOv4 on a small custom dataset.
Artif. Intell. Agric. 8, 30–45. doi: 10.1016/j.aiia.2023.03.002

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: an imperative style, high-performance deep learning library. arXiv. Available
online at: http://arxiv.org/abs/1912.01703 (Accessed June 25, 2025).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. Journal of Machine Learning Research
12, 2825–2830. Microtome Publishing, Brookline, MA, USA.. Available online at:
https://dl.acm.org/doi/10.5555/1953048.2078195 (Accessed June 25, 2025).

Posit team (2025). RStudio: Integrated Development Environment for R (Boston, MA:
Posit Software, PBC). Available online at: http://www.posit.co/ (Accessed June 25,
2025).

Poudel, H. P., Bhattarai, S., Singer, S. D., Biligetu, B., and Acharya, S. (2023). An
insight into sainfoin (Onobrychis viciifolia scop.) breeding: challenges and
achievements. Agron. J. 115, 2843–2858. doi: 10.1002/agj2.21439

Python Software Foundation (2024). Python language reference. Available online at:
https://www.python.org (Accessed June 25, 2025).

R Core Team (2025). R: A Language and Environment for Statistical Computing
(Vienna, Austria: R Foundation for Statistical Computing). Available online at: https://
www.R-project.org/ (Accessed June 25, 2025).

Meyering et al. 10.3389/fpls.2025.1655350

Frontiers in Plant Science frontiersin.org18

https://azojete.com.ng/index.php/azojete/article/view/1020
https://azojete.com.ng/index.php/azojete/article/view/1020
https://doi.org/10.1017/S1742170514000386
https://doi.org/10.1017/S1742170514000386
https://doi.org/10.18637/jss.v067.i01
https://github.com/heliosdrm/pwr
https://doi.org/10.3389/fnut.2023.1292628
https://doi.org/10.1002/fsn3.4117
https://doi.org/10.3390/molecules29081777
https://doi.org/10.1002/leg3.189
https://doi.org/10.1016/j.indcrop.2012.07.026
https://doi.org/10.1186/s13071-016-1617-z
https://doi.org/10.21105/joss.04101
https://doi.org/10.1094/CCHEM.2001.78.6.675
https://doi.org/10.1094/CCHEM.2001.78.6.675
https://doi.org/10.1094/CCHEM-84-3-0294
https://doi.org/10.1002/jsfa.2740570109
https://doi.org/10.1002/jsfa.2740570110
https://doi.org/10.3390/antiox13040482
https://doi.org/10.1002/jsfa.2460
https://doi.org/10.1002/jsfa.2460
https://colab.research.google.com/
https://colab.research.google.com/
https://doi.org/10.1016/j.biosystemseng.2007.09.015
https://doi.org/10.1016/j.biosystemseng.2007.09.015
https://arxiv.org/abs/1512.03385
https://doi.org/10.14445/22315381/IJETT-V73I1P134
https://doi.org/10.1002/9781118548387.ch5?saml_referrer
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.3390/seeds3030031
https://doi.org/10.1007/s11032-009-9319-2
https://github.com/jgraph/drawio
https://doi.org/10.1016/j.procs.2022.01.135
https://ieeexplore.ieee.org/abstract/document/9531849
https://ieeexplore.ieee.org/abstract/document/9531849
https://doi.org/10.1016/j.compag.2020.105507
https://orgprints.org/id/eprint/27969
https://orgprints.org/id/eprint/27969
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1016/j.tplants.2017.05.002
https://doi.org/10.13031/2013.28335
https://zenodo.org/records/10009966
https://www.biorxiv.org/content/early/2024/03/06/2024.03.05.583564
https://www.biorxiv.org/content/early/2024/03/06/2024.03.05.583564
https://doi.org/10.1016/j.sciaf.2019.e00174
https://doi.org/10.1080/00031305.1992.10475842
https://doi.org/10.1080/00031305.1992.10475842
https://doi.org/10.1080/23311932.2015.1136015
https://doi.org/10.1016/j.foodres.2010.04.007
https://doi.org/10.1016/j.aiia.2023.03.002
http://arxiv.org/abs/1912.01703
https://dl.acm.org/doi/10.5555/1953048.20781950
http://www.posit.co/
https://doi.org/10.1002/agj2.21439
https://www.python.org
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.3389/fpls.2025.1655350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Reichert, R. D., Oomah, B. D., and Youngs, C. G. (1984). Factors affecting the
efficiency of abrasive-type dehulling of grain legumes investigated with a new
intermediate-sized, batch dehuller. J. Food Sci. 49, 267–272. doi: 10.1111/j.1365-
2621.1984.tb13723.x

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 39 (6), 1137–1149. IEEE, Piscataway, NJ, USA. doi: 10.1109/
TPAMI.2016.2577031 (Accessed June 25, 2025).

Rimi, I. F., Habib, M. D. T., Supriya, S., Khan, M. D. A. A., and Hossain, S. A. (2022).
Traditional machine learning and deep learning modeling for legume species
recognition. SN Comput. Sci. 3, 430. doi: 10.1007/s42979-022-01268-w

Sakhraoui, A., Ltaeif, H. B., Sakhraoui, A., Villalba, J. J., Castillo, J. M., and Rouz, S.
(2024). Sainfoin (Onobrychis viciifolia) a legume with great ecological and agronomical
potential under climate change. J. Agric. Sci. 162, 307–331. doi: 10.1017/
S0021859624000327

Schlautman, B., Diaz-Garcia, L., and Barriball, S. (2020). Morphometric approaches
to promote the use of exotic germplasm for improved food security and resilience to
climate change: a kura clover example. Plant Sci. 290, 110319. doi: 10.1016/
j.plantsci.2019.110319

Sheppard, S. C., Cattani, D. J., Ominski, K. H., Biligetu, B., Bittman, S., and
McGeough, E. J. (2019). Sainfoin production in western Canada: A review of
agronomic potential and environmental benefits. Grass Forage Sci. 74, 6–18.
doi: 10.1111/gfs.12403

Singh, U. (1995). Methods for dehulling of pulses: A critical appraisal. J. Food Sci.
Technol. 32, 81–93.

Singh, S. M., Joshi, T. J., and Rao, P. S. (2024). Technological advancements in millet
dehulling and polishing process: An insight into pretreatment methods, machineries
and impact on nutritional quality. Grain Oil Sci. Technol. 7, 186–195. doi: 10.1016/
j.gaost.2024.05.007

Singh, S. M., and Rao, P. S. (2025). Impact dehulling of browntop millet: Its physical
and nutritional characterization. J. Cereal Sci. 121, 104078. doi: 10.1016/
j.jcs.2024.104078

Sohn, K., Berthelot, D., Li, C. L., Zhang, Z., Carlini, N., Cubuk, E. D., et al. (2020).
FixMatch: simplifying semi-supervised learning with consistency and confidence.
arXiv. 51, 13 pp. Available online at: http://arxiv.org/abs/2001.07685 (Accessed June
25, 2025).

Sottie, E. T., Acharya, S. N., McAllister, T., Thomas, J., Wang, Y., and Iwaasa, A.
(2014). Alfalfa pasture bloat can be eliminated by intermixing with newly-developed
sainfoin population. Agron. J. 106, 1470–1478. doi: 10.2134/agronj13.0378

Sreerama, Y. N., Sashikala, V. B., and Pratape, V. M. (2009). Effect of enzyme pre-
dehulling treatments on dehulling and cooking properties of legumes. J. Food Eng. 92,
389–395. doi: 10.1016/j.jfoodeng.2008.12.008

Taheri-Garavand, A., Nasiri, A., Fanourakis, D., Fatahi, S., Omid, M., and
Nikoloudakis, N. (2021). Automated in situ seed variety identification via deep
learning: A case study in chickpea. Plants. 10, 1406. doi: 10.3390/plants10071406

Tan, M., Pang, R., and Le, Q. V. (2020). “EfficientDet: scalable and efficient object
detection,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Seattle, WA, USA: CVPR), 10778–10787. Available online at: https://ieeexplore.ieee.
org/abstract/document/9156454 (Accessed June 25, 2025).

Tanabata, T., Shibaya, T., Hori, K., Ebana, K., and Yano, M. (2012). SmartGrain:
high-throughput phenotyping software for measuring seed shape through image
analysis. Plant Physiol. 160, 1871–1880. doi: 10.1104/pp.112.205120

Tarasenko, N. A., Butina, E. A., and Gerasimenko, E. O. (2015). Peculiarities of
chemical composition of sainfoin seeds powder. Orient J. Chem. 31, 1673–1682.
doi: 10.13005/ojc/310346

Thomas, L. (1997). Retrospective power analysis. Conserv. Biol. 11, 276–280.
doi: 10.1046/j.1523-1739.1997.96102.x

Tian, J., Mithun, N., Seymour, Z., Chiu, H. P., and Kira, Z. (2022). Striking the right
balance: recall loss for semantic segmentation. arXiv. 5063-5069. Available online at:
http://arxiv.org/abs/2106.14917 (Accessed June 25, 2025).

Wang, N. (2005). Optimization of a laboratory dehulling process for lentil (Lens
culinaris). Cereal Chem. 82, 671–676. doi: 10.1094/CC-82-0671

Wang, N. (2008). Effect of variety and crude protein content on dehulling quality and
on the resulting chemical composition of red lentil (Lens culinaris). J. Sci. Food Agric.
88, 885–890. doi: 10.1002/jsfa.3165

Wang, P., Meng, F., Donaldson, P., Horan, S., Panchy, N. L., Vischulis, E., et al.
(2022). High-throughput measurement of plant fitness traits with an object detection
method using Faster R-CNN. New Phytol. 234, 1521–1533. doi: 10.1111/nph.18056

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al.
(2019). Welcome to the tidyverse. J. Open Source Software 4, 1686. doi: 10.21105/
joss.01686

Williams, K., Munkvold, J., and Sorrells, M. (2013). Comparison of digital image
analysis using elliptic Fourier descriptors and major dimensions to phenotype seed
shape in hexaploid wheat (Triticum aestivum L.). Euphytica. 190, 99–116. doi: 10.1007/
s10681-012-0783-0

Zhang, C., Si, Y., Lamkey, J., Boydston, R. A., Garland-Campbell, K. A., and
Sankaran, S. (2018). High-throughput phenotyping of seed/seedling evaluation using
digital image analysis. Agronomy. 8, 63. doi: 10.3390/agronomy8050063

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M., and Shinozaki, T.
(2021). FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling.
In Proceedings of the 35th International Conference on Neural Information Processing
Systems (NeurIPS 2021). Article 1407, 12 pp. Curran Associates Inc., Red Hook, NY,
USA. Available online at: https://dl.acm.org/doi/10.5555/3540261.3541668 (Accessed
June 25, 2025).

Meyering et al. 10.3389/fpls.2025.1655350

Frontiers in Plant Science frontiersin.org19

https://doi.org/10.1111/j.1365-2621.1984.tb13723.x
https://doi.org/10.1111/j.1365-2621.1984.tb13723.x
https://doi.org/10.1007/s42979-022-01268-w
https://doi.org/10.1017/S0021859624000327
https://doi.org/10.1017/S0021859624000327
https://doi.org/10.1016/j.plantsci.2019.110319
https://doi.org/10.1016/j.plantsci.2019.110319
https://doi.org/10.1111/gfs.12403
https://doi.org/10.1016/j.gaost.2024.05.007
https://doi.org/10.1016/j.gaost.2024.05.007
https://doi.org/10.1016/j.jcs.2024.104078
https://doi.org/10.1016/j.jcs.2024.104078
http://arxiv.org/abs/2001.07685
https://doi.org/10.2134/agronj13.0378
https://doi.org/10.1016/j.jfoodeng.2008.12.008
https://doi.org/10.3390/plants10071406
https://ieeexplore.ieee.org/abstract/document/9156454
https://ieeexplore.ieee.org/abstract/document/9156454
https://doi.org/10.1104/pp.112.205120
https://doi.org/10.13005/ojc/310346
https://doi.org/10.1046/j.1523-1739.1997.96102.x
http://arxiv.org/abs/2106.14917
https://doi.org/10.1094/CC-82-0671
https://doi.org/10.1002/jsfa.3165
https://doi.org/10.1111/nph.18056
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://doi.org/10.1007/s10681-012-0783-0
https://doi.org/10.1007/s10681-012-0783-0
https://doi.org/10.3390/agronomy8050063
https://dl.acm.org/doi/10.5555/3540261.3541668
https://doi.org/10.3389/fpls.2025.1655350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Deep learning driven, image-based phenotyping of seed processing efficiency in sainfoin (Onobrychis viciifolia)
	Introduction
	Methods and materials
	Seed material
	Experimental design and processing
	Seed imaging
	Image labeling
	Faster RCNN modeling
	Image inference and calculations
	Statistical analysis
	Power analysis
	Software packages

	Results
	Object detection modeling and inference
	Predicted seed object counts
	Seed object analysis
	Processing efficiency calculations
	Clustering and PCA
	Power analysis

	Discussion
	Dataset creation
	Deep learning modeling
	Seed object modeling
	Measuring processing efficiency
	Choosing the correct sample size

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


