Genome evolution of intermediate wheatgrass

By Richard R.-C. Wang, Steve R. Larson, Kevin B. Jensen, B. Shaun Bushman, Lee R. DeHaan, Shuwen Wang, Xuebing Yan; Genome 58: 1-8in Scientific Publications - May 6, 2015

Abstract

Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey), a segmental autoallohexaploid (2n = 6x = 42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.) improvement. Throughout the scientific literature, there continues to be disagreement as to the origin of the different genomes in intermediate wheatgrass. Genotypic data obtained from newly developed EST-SSR primers derived from the putative progenitor diploid species Pseudoroegneria spicata (Pursh) Á. Löve (St genome), Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (J = Jb = Eb), and Thinopyrum elongatum (Host) D. Dewey (E = Je = Ee) indicate that the V genome of Dasypyrum (Coss. & Durieu) T. Durand is not one of the three genomes in intermediate wheatgrass. Based on all available information in the literature and findings in this study, the genomic designation of intermediate wheatgrass should be changed to JvsJrSt, where Jvs and Jr represent ancestral genomes of present-day Jb of Th. bessarabicum and Je of Th. elongatum, with Jvs being more ancient. Furthermore, the information suggests that the St genome in intermediate wheatgrass is most similar to the present-day St found in diploid species of Pseudoroegneria from Eurasia.

The paper is available online here.

To request a PDF, you may send us an email at info@landinstitute.org.